The contributions in this volume emphasize numerical analysis of experimental data and analytical biochemistry, with examples taken from biochemistry. They serve to inform biomedical researchers of the modern data analysis methods that have developed concmitantly with computer hardware.


Biochemists, biophysicists, physical chemists, molecular biologists, cell biologists, and endocrinologists.

Table of Contents

M.L. Johnson, Use of Least-Squares Techniques in Biochemistry. D.G. Watts, Parameter Estimates from Nonlinear Models. R.D. Abbott and H.P. Gutgesell, Effects of Heteroscedasticity and Skewness on Prediction in Regression: Modeling Growth of the Human Heart. M.L. Johnson and M. Lampl, Artifacts of Fourier Series Analysis. S.M. Pincus, Quantification of Evolution from Order to Randomness in Practical Time Series Analysis. M. Straume, Sequential versus Simultaneous Analysis of Data: Differences in Reliability of Derived Quantitative Conclusions. M. Straume, J.D. Veldhuis, and M.L. Johnson, Model-Independent Quantification of Measurement Error: Empirical Estimation of Discrete Variance Function Profiles Based on Standard Curves. L.-J. Hwang, Impact of Variance Function Estimation in Regression and Calibration. E.N. Brown and C.H. Schmid, Application of the Kalman Filter to Computational Problems in Statistics. R.I. Shrager, Modeling Chemical Reactions: Jacobian Paradigm and Related Issues. G.B. Ermentrout, The Mathematics of Biological Oscillators. J. Kasba and J.R. Lakowicz, Diffusion-Modulated Energy Transfer and Quenching: Analysis by Numerical Integration of Diffusion Equation in Laplace Space. J.-C. Brochon, Maximum Entropy Method of Data Analysis in Time-Resolved Spectroscopy. C. Frieden, Analysis of Kinetic Data: Practical Applications of Computer Simulation and Fitting Programs. D.J. OShannessy, M. Brigham-Burke, K.K. Soneson, P. Hensley, and I. Brooks, Determination of Rate and Equilibrium Binding Constants for Macromolecular Interactions by Surface Plasmon Resonance. J.D. Veldhuis, L.M. Faunt, and M.L. Johnson, Analysis of Non


No. of pages:
© 1994
Academic Press
Print ISBN:
Electronic ISBN:


@from:Praise for the Series @qu:"The Methods in Enzymology series represents the gold-standard." @source:--NEUROSCIENCE @qu:"Incomparably useful." @source:--ANALYTICAL BIOCHEMISTRY @qu:"It is a true 'methods' series, including almost every detail from basic theory to sources of equipment and reagents, with timely documentation provided on each page." @source:--BIO/TECHNOLOGY @qu:"The series has been following the growing, changing and creation of new areas of science. It should be on the shelves of all libraries in the world as a whole collection." @source:--CHEMISTRY IN INDUSTRY @qu:"The appearance of another volume in that excellent series, Methods in Enzymology, is always a cause for appreciation for those who wish to successfully carry out a particular technique or prepare an enzyme or metabolic intermediate without the tiresome prospect of searching through unfamiliar literature and perhaps selecting an unproven method which is not easily reproduced." @source:--AMERICAN SOCIETY OF MICROBIOLOGY NEWS @qu:"If we had some way to find the work most often consulted in the laboratory, it could well be the multi-volume series Methods in Enzymology...a great work." @source:--ENZYMOLOGIA @qu:"A series that has established itself as a definitive reference for biochemists." @source:--JOURNAL OF CHROMATOGRAPHY