Nitride Semiconductor Light-Emitting Diodes (LEDs) - 2nd Edition - ISBN: 9780081019429

Nitride Semiconductor Light-Emitting Diodes (LEDs)

2nd Edition

Materials, Technologies, and Applications

Authors: Jian-Jang Huang Hao-Chung Kuo Shyh-Chiang Shen
Paperback ISBN: 9780081019429
Imprint: Woodhead Publishing
Published Date: 1st October 2017
Page Count: 696
Tax/VAT will be calculated at check-out

Institutional Access

Table of Contents

  1. MBE growth of nitride semiconductors
    2. MOCVD growth of nitride semiconductors
    3. GaN on sapphire substrates
    4. GaN on silicon substrates
    5. Phosphors for white LEDs
    6. Fabrication of nitride LEDs
    7. Nanostructured LEDs
    8. Non-polar or semipolar LEDs
    9. Efficiency droop in GaInN/GaN LEDs
    10. Incorporating photonic crystals into nitride LEDs
    11. Surface plasmon enhanced LEDs
    12. Nitride LEDs based on quantum wells and quantum dots
    13. Color tunable LEDs
    14. Reliability of nitride LEDs
    15. Chip Packaging: Encapsulation of nitride LEDs
    16. White LEDs for lighting applications
    17. Ultra-violet LEDs
    18. Infra-red LEDs
    19. LEDs for LCD backlighting
    20. LEDs in automotive lighting
    21. LEDs for large displays: Projectors and outdoor displays
    22. Laser lighting


The development of nitride-based light-emitting diodes (LEDs) has led to advancements in high-brightness LED technology for solid-state lighting, handheld electronics, and advanced bioengineering applications. Nitride Semiconductor Light-Emitting Diodes (LEDs) reviews the fabrication, performance, and applications of this technology that encompass the state-of-the-art material and device development, and practical nitride-based LED design considerations.

The second edition provides key updates based off the latest research and advances, including two new chapters on LEDs for large displays and Laser Lighting.

Chapters cover molecular beam epitaxy (MBE) growth of nitride semiconductors, modern metalorganic chemical vapor deposition (MOCVD) techniques and the growth of nitride-based materials, and gallium nitride (GaN)-on-sapphire and GaN-on-silicon technologies for LEDs. Nanostructured, non-polar and semi-polar nitride-based LEDs, as well as phosphor-coated nitride LEDs, are also discussed. The book also addresses the performance of nitride LEDs, including photonic crystal LEDs, surface plasmon enhanced LEDs, color tuneable LEDs, and LEDs based on quantum wells and quantum dots. Further chapters discuss the development of LED encapsulation technology and the fundamental efficiency droop issues in gallium indium nitride (GaInN) LEDs. Finally, Nitride Semiconductor LEDs highlights applications of nitride LEDs, including liquid crystal display (LCD) backlighting, infrared emitters, automotive lighting, large displays, and laser lighting.

Nitride Semiconductor Light-Emitting Diodes (LEDs), Second Edition is a technical resource for academics, physicists, materials scientists, electrical engineers, and those working in the lighting, consumer electronics, automotive, aviation, and communications sectors.

Key Features

  • Second edition features new chapters on Laser Lighting and Large, addressing the latest advances on this topic
  • Reviews fabrication, performance, and applications of this technology that encompass the state-of-the-art material and device development, and practical nitride-based LED design considerations
  • Covers the performance of nitride LEDs, including photonic crystal LEDs, surface plasmon enhanced LEDs, color tuneable LEDs, and LEDs based on quantum wells and quantum dots
  • Highlights applications of nitride LEDs, including liquid crystal display (LCD) backlighting, infra-red emitters, and automotive lighting
  • Comprehensive chapters on Gallium Nitride on both silicon and sapphire substrates


Researchers, engineers, and R&D engineers working in the fields of light emitting diode based solid state lighting technology or who are developing nitride devices; Manufacturers of computer monitors, cell phones, and tablets. Also could appeal to graduate students in materials science and engineering disciplines


No. of pages:
© Woodhead Publishing 2018
Woodhead Publishing
Paperback ISBN:

About the Authors

Jian-Jang Huang Author

Prof. JianJang Huang received the B.S. degree in Electrical Engineering (EE) and the M.S. degree in Graduate Institute of Photonics and Optoelectronics (GIPO) from National Taiwan University (NTU), Taipei, Taiwan, in 1994 and 1996, respectively, and the Ph.D. degree in Electrical Engineering from the University of Illinois, Urbana-Champaign, in 2002. He had worked with WJ (Watkins Johnson) Communications in California, as a Staff Scientist from 2002 to 2004. He then came back to Taiwan in 2004 and is currently the professor at NTU EE and GIPO. Prof. Huang has been involved in the development of optoelectronic and electronic devices. He has developed a spin-coating method for nanosphere lithography (NSL) to significantly improve the performance of light emitting diodes (LEDs), solar cells and nanorod devices. His NSL approach has been licensed to several LED companies in Taiwan. He has also fabricated and characterized IGZO TFTs and the corresponding circuits on glass and flexible substrates. In recent years, his group has spent great efforts in realizing cancer cell probes using ZnO nanorods, and high-sensitivity protein sensors based on IGZO TFTs. Prof. Huang is a member of the Phi Tau Phi Scholastic Honor Society. He received “Wu Da-Yu” award in 2008, the most prestigious one for young researchers in Taiwan sponsored by National Science Council. And in the same year, he received the award for the most excellent young electrical engineer from the Chinese Institute of Electrical Engineering. He has served in several IPO committees in Taiwan Stock Exchange. He is currently the board director of GCS holdings in Torrance, CA, USA and the conference chair of SPIE, International Conference on Solid-State Lighting.

Affiliations and Expertise

Professor, National Taiwan University

Hao-Chung Kuo Author

Professor H. C. Kuo received the B.S. degree in Physics from National Taiwan University, Taiwan the M.S. degree in Electrical and computer engineering from Rutgers University in 1995, and the Ph.D. from Center of Compound Semiconductor Microelectronics (CCSM) of University of Illinois- Urbana Champaign in 1998. He has an extensive professional career both in research and industrial research institutions that includes: Research Consultant in Lucent Technologies, Bell Lab (1995-97); Member of Technical Staff in Fiber-optics Division at Agilent Technologies, USA (1999-2001) and Manager of LuxNet Corporation, USA (2001-2002). Since October, 2002 he joined National Chiao Tung University as a faculty member of Institute of Electro-Optical Engineering. Professor Kuo is a member of the IEEE and a recipient of Yang faculty Award from the Foundation for the Advancement of Outstanding Scholarship, he was author and co-author of 70 SCI journal papers and 80 international conference papers.

Affiliations and Expertise

National Chiao-Tung University, Taiwan

Shyh-Chiang Shen Author

Shyh-Chiang Shen received his B.S. and M.S. degrees, both in electrical engineering, from National Taiwan University in 1993 and 1995, respectively. He received his Ph.D. degree in electrical engineering at the University of Illinois at Urbana-Champaign (UIUC) in 2001. During his graduate study at the University of Illinois, he was involved in the development of low-voltage RF MEMS switches and ion-implanted GaAs MESFET using e-beam direct gate-writing photolithography techniques. Dr. Shen joined Xindium Technologies, Inc. as a senior processing engineer in June 2001. He developed a proprietary high-performance InP SHBT technology for 40Gb/s OEIC applications and InP-based power HBT technology for wireless communications. In August 2004, he joined the HSIC group at the University of Illinois as a postdoctoral research associate to work on exciting research projects. In January 2005, he joined the Georgia Institute of Technology as an Assistant Professor. Dr. Shen holds 7 awarded U.S. patents in the MEMS and microelectronics areas. His current research is focused on wide bandgap semiconductor microelectronics and optoelectronic devices for high-energy-efficiency applications.

Affiliations and Expertise

Associate Professor, Georgia Institute of Technology, USA