Neural Networks - 1st Edition - ISBN: 9780444893307, 9781483297095

Neural Networks

1st Edition

Advances and Applications, 2

Editors: E. Gelenbe
eBook ISBN: 9781483297095
Imprint: North Holland
Published Date: 21st July 1992
Page Count: 230
Tax/VAT will be calculated at check-out Price includes VAT (GST)
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
72.95
51.06
51.06
51.06
51.06
51.06
58.36
58.36
43.99
30.79
30.79
30.79
30.79
30.79
35.19
35.19
160.00
112.00
112.00
112.00
112.00
112.00
128.00
128.00
54.95
38.47
38.47
38.47
38.47
38.47
43.96
43.96
Unavailable
Price includes VAT (GST)
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

The present volume is a natural follow-up to Neural Networks: Advances and Applications which appeared one year previously. As the title indicates, it combines the presentation of recent methodological results concerning computational models and results inspired by neural networks, and of well-documented applications which illustrate the use of such models in the solution of difficult problems. The volume is balanced with respect to these two orientations: it contains six papers concerning methodological developments and five papers concerning applications and examples illustrating the theoretical developments. Each paper is largely self-contained and includes a complete bibliography.

The methodological part of the book contains two papers on learning, one paper which presents a computational model of intracortical inhibitory effects, a paper presenting a new development of the random neural network, and two papers on associative memory models. The applications and examples portion contains papers on image compression, associative recall of simple typed images, learning applied to typed images, stereo disparity detection, and combinatorial optimisation.

Table of Contents

Learning in the Recurrent Random Neural Network (E. Gelenbe). Generalization Performance of Feed-Forward Neural Networks (S. Shekhar et al.). The Nature of Intracortical Inhibitory Effects (J.A. Reggia et al.). Random Neural Networks with Multiple Classes of Signals (J.-M. Fourneau, E. Gelenbe). The MicroCircuit Associative Memory, &mgr;AM: A Biologically Motivated Memory Architecture (C.F. Miles, D. Rogers). Generalised Associative Memory and the Computation of Membership Functions (E. Gelenbe). Layered Neural Network for Stereo Disparity Detection (E. Maeda et al.). Storage and Recognition Methods for the Random Neural Network (M. Mokhtari). Neural Networks for Image Compression (S. Carrato). Autoassociative Memory with the Random Neural Network using Gelenbe's Learning Algorithm (C. Hubert). Minimum Graph Covering with the Random Neural Network Model (E. Gelenbe, F. Batty).

Details

No. of pages:
230
Language:
English
Copyright:
© North Holland 1992
Published:
Imprint:
North Holland
eBook ISBN:
9781483297095

About the Editor

E. Gelenbe

Affiliations and Expertise

Université Rene Descartes, Paris, France