Neural Networks for Perception - 1st Edition - ISBN: 9780127412511, 9781483260259

Neural Networks for Perception

1st Edition

Human and Machine Perception

Editors: Harry Wechsler
eBook ISBN: 9781483260259
Imprint: Academic Press
Published Date: 1st November 1991
Page Count: 542
Sales tax will be calculated at check-out Price includes VAT/GST
25% off
25% off
25% off
25% off
25% off
20% off
20% off
25% off
25% off
25% off
25% off
25% off
20% off
20% off
25% off
25% off
25% off
25% off
25% off
20% off
20% off
70.95
53.21
53.21
53.21
53.21
53.21
56.76
56.76
56.99
42.74
42.74
42.74
42.74
42.74
45.59
45.59
93.95
70.46
70.46
70.46
70.46
70.46
75.16
75.16
Unavailable
Price includes VAT/GST
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Neural Networks for Perception, Volume 1: Human and Machine Perception focuses on models for understanding human perception in terms of distributed computation and examples of PDP models for machine perception.

This book addresses both theoretical and practical issues related to the feasibility of both explaining human perception and implementing machine perception in terms of neural network models. The book is organized into two parts. The first part focuses on human perception. Topics on network model of object recognition in human vision, the self-organization of functional architecture in the cerebral cortex, and the structure and interpretation of neuronal codes in the visual system are detailed under this part. Part two covers the relevance of neural networks for machine perception. Subjects considered under this section include the multi-dimensional linear lattice for Fourier and Gabor transforms, multiple- scale Gaussian filtering, and edge detection; aspects of invariant pattern and object recognition; and neural network for motion processing.

Neuroscientists, computer scientists, engineers, and researchers in artificial intelligence will find the book useful.

Table of Contents


Contents of Volume 2: Computation, Learning, and Architectures

Contributors

Foreword

Part I Human Perception

I.Introduction

1.1 Visual Cortex: Window on the Biological Basis of Learning and Memory

1.2 A Network Model of Object Recognition in Human Vision

1.3 A Cortically Based Model for Integration in Visual Perception

1.4 The Symmetric Organization of Parallel Cortical Systems for Form and Motion Perception

1.5 The Structure and Interpretation of Neuronal Codes in the Visual System

1.6 Self-Organization of Functional Architecture in the Cerebral Cortex

1.7 Filters Versus Textons in Human and Machine Texture Discrimination

1.8 Two-Dimensional Maps and Biological Vision: Representing Three-Dimensional Space

Part II Machine Perception

II.Introduction

II.1 WISARD and Other Weightless Neurons

II.2 Multi-Dimensional Linear Lattice for Fourier and Gabor Transforms, Multiple-Scale Gaussian Filtering, and Edge Detection

II.3 Aspects of Invariant Pattern and Object Recognition

II.4 A Neural Network Architecture for Fast On-Line Supervised Learning and Pattern Recognition

II.5 Neural Network Approaches to Color Vision

II.6 Adaptive Sensory-Motor Coordination Through Self-Consistency

II.7 Finding Boundaries in Images

II.8 Compression of Remotely Sensed Images Using Self-Organizing Feature Maps

II.9 Self-Organizing Maps and Computer Vision

II.10 Region Growing Using Neural Networks

II.11 Vision and Space-Variant Sensing

II.12 Learning and Recognizing 3D Objects from Multiple Views in a Neural System

II.13 Hybrid Symbolic-Neural Methods for Improved Recognition Using High-Level Visual Features

II.14 Multiscale and Distributed Visual Representations and Mappings for Invariant Low-Level Perception

II.15 Symmetry: A Context Free Cue for Foveated Vision

II.16 A Neural Network for Motion Processing

Index

Details

No. of pages:
542
Language:
English
Copyright:
© Academic Press 1992
Published:
Imprint:
Academic Press
eBook ISBN:
9781483260259

About the Editor

Harry Wechsler

Ratings and Reviews