Neural Networks and Pattern Recognition

1st Edition

Print ISBN: 9780123995902
eBook ISBN: 9780080512617
Imprint: Academic Press
Published Date: 20th October 1997
Page Count: 351
101.00 + applicable tax
8800.00 + applicable tax
61.99 + applicable tax
76.95 + applicable tax
94.95 + applicable tax
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


This book is one of the most up-to-date and cutting-edge texts available on the rapidly growing application area of neural networks. Neural Networks and Pattern Recognition focuses on the use of neural networksin pattern recognition, a very important application area for neural networks technology. The contributors are widely known and highly respected researchers and practitioners in the field.

Key Features

@introbul:Key Features @bul:* Features neural network architectures on the cutting edge of neural network research

  • Brings together highly innovative ideas on dynamical neural networks
  • Includes articles written by authors prominent in the neural networks research community
  • Provides an authoritative, technically correct presentation of each specific technical area


Researchers and practitioners in the fields of pattern recognition, neural networks, signal processing, control engineering, electrical engineering, industrial engineering, and mechanical engineering.

Table of Contents

(Chapter Headings) Preface. Contributors. J.L. Johnson, H. Ranganath, G. Kuntimad, and H.J. Caulfield,Pulse-Coupled Neural Networks.H. Li and J. Wang,A Neural Network Model for Optical Flow Computation.F. Unal and N. Tepedelenlioglu,Temporal Pattern Matching Using an Artificial Neural Network.J. Dayhoff, P. Palmadesso, F. Richards, and D.-T. Lin, Patterns of Dynamic Activity and Timing in Neural Network Processing. J. Ghosh, H.-J. Chang, and K. Liano, A Macroscopic Model of Oscillation in Ensembles of Inhibitory and Excitatory Neurons. P. Tito, B. Horne, C.L. Giles, and P. Collingwood, Finite State Machines and Recurrent Neural Networks--Automata and Dynamical Systems Approaches. R. Anderson, Biased Random-Walk Learning: A Neurobiological Correlate to Trial-and-Error. A. Nigrin, Using SONNET 1 to Segment Continuous Sequences of Items. K. Venkatesh, A. Pandya, and S. Hsu,On the Use of High Level Petri Nets in the Modeling of Biological Neural Networks. J. Principe, S. Celebi, B. de Vries, and J. Harris, Locally Recurrent Networks: The Gamma Operator, Properties, and Extensions.Preface. Contributors. J.L. Johnson, H. Ranganath, G. Kuntimad, and H.J. Caulfield, Pulse-Coupled Neural Networks: Introduction. Basic Model. Multiple Pulses. Multiple Receptive Field Inputs. Time Evolution of Two Cells. Space to Time. LinkingWaves and Time Scales. Groups. Invariances. Segmentation. Adaptation. Time to Space. Implementations. Integration into Systems. Concluding Remarks. References. H. Li and J. Wang, A Neural Network Model for Optical Flow Computation: Introduction. Theoretical Background. Discussion on the Reformulation. Choosing Regularization Parameters. A Recurrent Neural Network Model. Experiments. Comparison to Other Work. Summary and Discussion. References. F. Unal and N. Tepedelenlioglu, TemporalPattern Matching Using an Artificial Neural Network: Introduction. Solving Optimization Problems Using the Hopfield Network. Dynamic Time Warping Using Hopfield Network. Comput


No. of pages:
© Academic Press 1998
Academic Press
eBook ISBN:
Hardcover ISBN:
Paperback ISBN:


@qu:"Contributors incorporate landmark results on how neural network models have evolved from simple feedforward systems into advanced neural architectures with self-sustained activity patters, simple and complicated oscillations, specialized time elements, and new capabilities for analysis and processing of time-varying signals. Coverage includes the architecture and capabilities of pulse-coupled networks; the relationship between automata and recurrent neural networks; and a putative neurobiological model that correlates with trial-and-error learning." @source:--REFERENCE & RESEARCH BOOK NEWS