Neural Networks and Pattern Recognition

1st Edition

Authors: Omid Omidvar Judith Dayhoff
Hardcover ISBN: 9780125264204
eBook ISBN: 9780080512617
Imprint: Academic Press
Published Date: 20th October 1997
Page Count: 351
101.00 + applicable tax
8800.00 + applicable tax
61.99 + applicable tax
76.95 + applicable tax
94.95 + applicable tax
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Description

This book is one of the most up-to-date and cutting-edge texts available on the rapidly growing application area of neural networks. Neural Networks and Pattern Recognition focuses on the use of neural networksin pattern recognition, a very important application area for neural networks technology. The contributors are widely known and highly respected researchers and practitioners in the field.

Key Features

@introbul:Key Features @bul:* Features neural network architectures on the cutting edge of neural network research

  • Brings together highly innovative ideas on dynamical neural networks
  • Includes articles written by authors prominent in the neural networks research community
  • Provides an authoritative, technically correct presentation of each specific technical area

Readership

Researchers and practitioners in the fields of pattern recognition, neural networks, signal processing, control engineering, electrical engineering, industrial engineering, and mechanical engineering.

Table of Contents

(Chapter Headings) Preface. Contributors. J.L. Johnson, H. Ranganath, G. Kuntimad, and H.J. Caulfield,Pulse-Coupled Neural Networks.H. Li and J. Wang,A Neural Network Model for Optical Flow Computation.F. Unal and N. Tepedelenlioglu,Temporal Pattern Matching Using an Artificial Neural Network.J. Dayhoff, P. Palmadesso, F. Richards, and D.-T. Lin, Patterns of Dynamic Activity and Timing in Neural Network Processing. J. Ghosh, H.-J. Chang, and K. Liano, A Macroscopic Model of Oscillation in Ensembles of Inhibitory and Excitatory Neurons. P. Tito, B. Horne, C.L. Giles, and P. Collingwood, Finite State Machines and Recurrent Neural Networks--Automata and Dynamical Systems Approaches. R. Anderson, Biased Random-Walk Learning: A Neurobiological Correlate to Trial-and-Error. A. Nigrin, Using SONNET 1 to Segment Continuous Sequences of Items. K. Venkatesh, A. Pandya, and S. Hsu,On the Use of High Level Petri Nets in the Modeling of Biological Neural Networks. J. Principe, S. Celebi, B. de Vries, and J. Harris, Locally Recurrent Networks: The Gamma Operator, Properties, and Extensions.Preface. Contributors. J.L. Johnson, H. Ranganath, G. Kuntimad, and H.J. Caulfield, Pulse-Coupled Neural Networks: Introduction. Basic Model. Multiple Pulses. Multiple Receptive Field Inputs. Time Evolution of Two Cells. Space to Time. LinkingWaves and Time Scales. Groups. Invariances. Segmentation. Adaptation. Time to Space. Implementations. Integration into Systems. Concluding Remarks. References. H. Li and J. Wang, A Neural Network Model for Optical Flow Computation: Introduction. Theoretical Background. Discussion on the Reformulation. Choosing Regularization Parameters. A Recurrent Neural Network Model. Experiments. Comparison to Other Work. Summary and Discussion. References. F. Unal and N. Tepedelenlioglu, TemporalPattern Matching Using an Artificial Neural Network: Introduction. Solving Optimization Problems Using the Hopfield Network. Dynamic Time Warping Using Hopfield Network. Comput

Details

No. of pages:
351
Language:
English
Copyright:
© Academic Press 1998
Published:
Imprint:
Academic Press
eBook ISBN:
9780080512617
Hardcover ISBN:
9780125264204

About the Author

Omid Omidvar

Omid Omidvar is a professor of Computer Science at the University of Computer Science at the University of the District of Columbia, Washington, D.C. He is also a technical director of SPPARC center; a supercomputing facility funded by NSF. He received his Ph.D. from the University of Oklahoma in 1967 and has done extensive work in applications of Neural Networks in Optical Character Recognition and Finger Print for the National Institute of Standards and Technology. Dr. Omidvar has been a consultant to many of the world's most important corporations including IBM, Sun, Gumann, and has completed a five year project for the District of Columbia NASA Consortium in design and performance evaluation of neurocontrollers. Dr. Omidvar is also the Editor-in-Chief of the Journal of Artificial Neural Networks, has been an editor of Progress in Neural Network Series since 1990, and has published a large number of journal and conference publications. In addition to teaching, Dr. Omidvar is also currently working as a computer scientist in the Image Recognition Group, Advanced System Division, at NIST.

Affiliations and Expertise

University of the District of Columbia

Judith Dayhoff

Affiliations and Expertise

Institute of System Research, University of Maryland

Reviews

@qu:"Contributors incorporate landmark results on how neural network models have evolved from simple feedforward systems into advanced neural architectures with self-sustained activity patters, simple and complicated oscillations, specialized time elements, and new capabilities for analysis and processing of time-varying signals. Coverage includes the architecture and capabilities of pulse-coupled networks; the relationship between automata and recurrent neural networks; and a putative neurobiological model that correlates with trial-and-error learning." @source:--REFERENCE & RESEARCH BOOK NEWS