Network Recovery is the first book to provide detailed information on protecting and restoring communication networks, and it sets a sky-high standard for any that may follow. Inside, you’ll learn specific techniques that work at each layer of the networking hierarchy—including optical, SONET-SDH, IP, and MPLS—as well as multi-layer escalation strategies that offer the highest level of protection. The authors begin with an incisive introduction to the issues that define the field of network protection and restoration, and as the book progresses they explain everything you need to know about the relevant protocols, providing theoretical analyses wherever appropriate. If you work for a network-dependent organization, large or small, you’ll want to keep Network Recovery within reach at all times.

Key Features

* Shows you how to implement protection and recovery techniques that will save your organization time and money. * Documents techniques for the optical, SONET-SDH, IP, and MPLS layers, as well as multi-layer escalation strategies. * Shows you how to evaluate these techniques in relation to one another, so you can develop an optimal network recovery design. * Provides industry examples and simulation results. * Delves into the inner workings of relevant protocols and offers theoretical analyses wherever this information contributes to your practical knowledge.


Networking professionals in medium to large corporations (including gov't. and military) as well as telecom companies, i.e., network engineers and consultants, network managers, systems engineers, protocol designers, network architects and designers, service providers and equipment vendors.

Table of Contents

Chapter 1: Introduction 1.1 Communications networks today 1.1.1 Fundamental networking concepts 1.1.2 Layered network representation 1.1.3 Network planes 1.2 Network reliability 1.2.1 Definitions 1.2.2 Which failures can occur? 1.2.3 Reliability requirements for various users and services 1.2.4 Measures to increase reliability 1.3 Different phases in a recovery process 1.3.1 Recovery cycle 1.3.2 Reversion cycle 1.4 Performance of recovery mechanisms: criteria 1.4.1 Scope of failure coverage 1.4.2 Recovery time 1.4.3 Backup capacity requirements 1.4.4 Guaranteed bandwidth 1.4.5 Reordering and duplication 1.4.6 Additive latency and jitter 1.4.7 State overhead 1.4.8 Scalability 1.4.9 Signaling requirements 1.4.10 Stability 1.4.11 Notion of recovery class 1.5 Classification of single-layer recovery mechanisms 1.5.1 Backup capacity: dedicated versus shared 1.5.2 Recovery paths: pre-planned versus dynamic 1.5.3 Protection versus restoration 1.5.4 Global versus local recovery 1.5.5 Control of recovery mechanisms 1.5.6 Ring networks versus mesh networks 1.5.7 Connection-oriented versus connectionless 1.5.8 Revertive versus non-revertive mode 1.6 Multi-layer recovery 1.7 Conclusion Chapter 2: SONET-SDH 2.1 Introduction: transmission networks 2.1.1 Transmission Networks 2.1.2 Management of (Transmission) Networks 2.1.3 Structuring/Modeling Transmission Networks 2


No. of pages:
© 2004
Morgan Kaufmann
Print ISBN:
Electronic ISBN:

About the editors

Jean-Philippe Vasseur

Jean-Philippe Vasseur is a Distinguished Engineer at Cisco Systems. He is the co-chair of the ROLL working group in the IETF and the chair of technology advisory board in the IP for Smart Objects (IPSO) Alliance. JP Vasseur has co-authored a number of RFCs on IP routing, MPLS, Traffic Engineering and Smart Object networks.

Affiliations and Expertise

Distinguished Engineer at Cisco Systems

Mario Pickavet

Affiliations and Expertise

Ghent University, Gent, Belgium

Piet Demeester

Affiliations and Expertise

Ghent University, Gent, Belgium


"If one desires to learn as extensive and still evolving a field as network recovery, he or she will be interested in a book prepared by authors related to two somewhat separate worlds: industry and academia. ... This combination of knowledge gives an excellent overview of hot topics related to communications network resilience.... The advantage of this book is related to the fact that each chapter can be read separately, since the authors briefly repeat the most important ideas as necessary. The other benefit is that the current state of the development level of some techniques is signaled. To sum up, the book gives the reader a deep insight into "how it works." ... Thanks to this fact, the book can be recommended to everybody interested in network recovery, from layperson to experienced designer who would like to learn about the latest solutions." -- IEEE Communications Magazine, Book Reviews, July 2005. Reviewer: Piotr Cholda "This is the right book at the right time for anyone in the telecommunications business, or anyone who is dependent on the services provided by the telecommunications business that would like to understand the new Internet that is rapidly becoming the common reality." —From the Foreword by Scott Bradner, Senior Technical Consultant and University Technology, Security Officer at Harvard University "This book provides a welcome overview of the many techniques applied to protect and recover data paths in IP and MPLS networks as well as in SONET/SDH and optical transport networks. The analysis and case studies of MPLS Traffic Engineering recovery mechanisms will be particularly useful to operators intending to deploy MPLS protection within their networks." —Adrian Farrel, Old Dog Consulting & Co-Chair of the IETF CCAMP Working Group "I recommend this book to anyone responsible for the design, implementation and management of any-sized commu