COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Nature-Inspired Computation and Swarm Intelligence - 1st Edition - ISBN: 9780128197141, 9780128226094

Nature-Inspired Computation and Swarm Intelligence

1st Edition

Algorithms, Theory and Applications

Editor: Xin-She Yang
Paperback ISBN: 9780128197141
eBook ISBN: 9780128226094
Imprint: Academic Press
Published Date: 10th April 2020
Page Count: 442
Sales tax will be calculated at check-out Price includes VAT/GST
217.23
155.00
108.50
119.00
135.00
Unavailable
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Nature-inspired computation and swarm intelligence have become popular and effective tools for solving problems in optimization, computational intelligence, soft computing and data science. Recently, the literature in the field has expanded rapidly, with new algorithms and applications emerging.

Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is a timely reference giving a comprehensive review of relevant state-of-the-art developments in algorithms, theory and applications of nature-inspired algorithms and swarm intelligence. It reviews and documents the new developments, focusing on nature-inspired algorithms and their theoretical analysis, as well as providing a guide to their implementation. The book includes case studies of diverse real-world applications, balancing explanation of the theory with practical implementation.

Nature-Inspired Computation and Swarm Intelligence: Algorithms, Theory and Applications is suitable for researchers and graduate students in computer science, engineering, data science, and management science, who want a comprehensive review of algorithms, theory and implementation within the fields of nature inspired computation and swarm intelligence.

Key Features

  • Introduces nature-inspired algorithms and their fundamentals, including: particle swarm optimization, bat algorithm, cuckoo search, firefly algorithm, flower pollination algorithm, differential evolution and genetic algorithms as well as multi-objective optimization algorithms and others
  • Provides a theoretical foundation and analyses of algorithms, including: statistical theory and Markov chain theory on the convergence and stability of algorithms, dynamical system theory, benchmarking of optimization, no-free-lunch theorems, and a generalized mathematical framework
  • Includes a diversity of case studies of real-world applications: feature selection, clustering and classification, tuning of restricted Boltzmann machines, travelling salesman problem, classification of white blood cells, music generation by artificial intelligence, swarm robots, neural networks, engineering designs and others

Readership

Researchers, advanced undergraduate and graduate students in computer science, engineering, optimization, data science, and management science

Table of Contents

1. Nature-Inspired Computation and Swarm Intelligence
2. Bat Algorithm and Cuckoo Search Algorithms
3. Firefly Algorithm and Flower Pollination Algorithm
4. Bio-inspired Algorithms: Principles, Implementation and Applications to wireless communicatinon

Part II: Theory and Analysis
5. Mathematical Foundations for Algorithm Analysis
6. Probability Theory for Analysing Nature-Inspired Algorithms
7. Theoretical Framework for Algorithm Analysis

Part III: Applications
8. Tuning Restricted Boltzmann Machines
9. Traveling Salesman Problem: Review and New Results
10. Clustering with Nature Inspired Metaheuristics
11. Bat Algorithm for Feature Selection and White Blood Cell Classification
12. Modular Granular Neural Networks Optimisation using the Firefly Algorithm applied to Time Series Prediction
13. Artificail Intelligence Methods for Music generation: A review and future perspectives
14. Optimized controller design for island microgrid employing non-dominated sorting firefly Algorithm (NSFA)
15. Swarm Robotics: A case study -- Bat robotics
16. Electrical Harmonies estimation in power systems using bat algorithm
17. CSBIIST: Cuckoo Search based intelligent Image segmentation technique
18. Improving Genetic Algorithm Solution’s Performance for Optimal Order Allocation in an E-Market with the Pareto Optimal Set
19. Multi-Robot Coordination Through Bio-Inspired Strategies
20. Optimization in Probabilistic Domains: An Engineering Approach

Details

No. of pages:
442
Language:
English
Copyright:
© Academic Press 2020
Published:
10th April 2020
Imprint:
Academic Press
Paperback ISBN:
9780128197141
eBook ISBN:
9780128226094

About the Editor

Xin-She Yang

Xin-She Yang

Xin-She Yang obtained his DPhil in Applied Mathematics from the University of Oxford. He then worked at Cambridge University and National Physical Laboratory (UK) as a Senior Research Scientist. He is currently a Reader at Middlesex University London, Adjunct Professor at Reykjavik University (Iceland) and Guest Professor at Xi’an Polytechnic University (China). He is an elected Bye-Fellow at Downing College, Cambridge University. He is also the IEEE CIS Chair for the Task Force on Business Intelligence and Knowledge Management, and the Editor-in-Chief of International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO).

Affiliations and Expertise

School of Science and Technology, Middlesex University, UK

Ratings and Reviews