Tensile strength, fatigue strength and ductility are important properties of nanostructured metallic materials, which make them suitable for use in applications where strength or strength-to-weight ratios are important. Nanostructured metals and alloys reviews the latest technologies used for production of these materials, as well as recent advances in research into their structure and mechanical properties.

One of the most important issues facing nanostructured metals and alloys is how to produce them. Part one describes the different methods used to process bulk nanostructured metals and alloys, including chapters on severe plastic deformation, mechanical alloying and electrodeposition among others. Part two concentrates on the microstructure and properties of nanostructured metals, with chapters studying deformation structures such as twins, microstructure of ferrous alloys by equal channel angular processing, and characteristic structures of nanostructured metals prepared by plastic deformation. In part three, the mechanical properties of nanostructured metals and alloys are discussed, with chapters on such topics as strengthening mechanisms, nanostructured metals based on molecular dynamics computer simulations, and surface deformation. Part four focuses on existing and developing applications of nanostructured metals and alloys, covering topics such as nanostructured steel for automotives, steel sheet and nanostructured coatings by spraying.

With its distinguished editor and international team of contributors, Nanostructured metals and alloys is a standard reference for manufacturers of metal components, as well as those with an academic research interest in metals and materials with enhanced properties.


Professionals and academics.

Table of Contents

Contributor contact details


Part I: Processing bulk nanostructured metals and alloys

Chapter 1: Producing bulk nanostructured metals and alloys by severe plastic deformation (SPD)


1.1 Introduction

1.2 The principles of severe plastic deformation (SPD) processing

1.3 New trends in SPD processing for effective grain refinement

1.4 Enhanced properties achieved using SPD processing

1.5 Innovation potential of bulk nanostructured materials

1.6 Conclusions

Chapter 2: Bulk nanostructured metals and alloys produced by accumulative roll-bonding


2.1 Introduction

2.2 The principle of accumulative roll-bonding (ARB)

2.3 Processing details

2.4 Change in microstructures during the process

2.5 Mechanical properties of nanostructured metals fabricated by ARB

2.6 Conclusions

Chapter 3: Nanocrystalline metals and alloys prepared by mechanical attrition


3.1 Introduction

3.2 Mechanical attrition

3.3 Nanocrystalline phase formation by mechanical attrition

3.4 Consolidation of nanocrystalline powders

3.5 Conclusion and future trends

3.6 Acknowledgements

Chapter 4: The processing of nanocrystalline steels by solid reaction


4.1 Introduction

4.2 The finest grain structures in steels

4.3 Phase transformation theory: a powerful tool for the design of advanced steels, from micro to nano

4.4 NANOBAIN steel: a material going to extremes

4.5 Accelerating the bainite reaction at low temperatures

4.6 Characterizing nanocrystalline bainitic steels at the atomic scale

4.7 The mechanical properties of nanocrystalline bainitic steels

4.8 Conclusion and future trends

4.10 Acknowledgements

Chapter 5: The processing of bulk nanocrystalline metals and


No. of pages:
© 2011
Woodhead Publishing
Electronic ISBN:
Print ISBN:
Print ISBN:

About the editor

S H Whang

Sung H. Whang is Professor of Mechanical Engineering at the Polytechnic Institute of New York University.