Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications - 1st Edition - ISBN: 9780128144992

Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications

1st Edition

Editors: Hideo Kimura Zhenxiang Cheng Tingting Jia
Paperback ISBN: 9780128144992
Imprint: Elsevier
Published Date: 1st February 2019
Page Count: 304
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

1. Domain switching on multiferroic thin films
2. Strain engineering for novel multiferroic materials
3. Aurivillius layered multiferroic nanomaterials
4. Fabrication of (K, Na)NbO3 film by PLD and its domain observation using laser microscopy
5. Nanoscale materials design using proton beam
6. Thin film fabrication using nanoscale flat substrate
7. Ferroic domain observation using transition microscope
8. First principle calculation for ferroic nanomaterials
9. Structural optimization of piezoelectric thin-film vibration energy harvesters based on electric equivalent circuit model
10. Flexible energy harvester using nanofiber
11. Microenergy harvesting using BiFeO3 multiferroic materials
12. Energy harvesting using pyroelectric materials by thermal energy


Description

Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications presents the latest information in the emerging field of multiferroic materials research, exploring applications in energy conversion and harvesting at the nanoscale. The book covers crystal and microstructure, ferroelectric, piezoelectric and multiferroic physical properties, along with their characterization. Special attention is given to the design and tailoring of ferroelectric, magnetic and multiferroic materials and their interaction among ferroics. The fundamentals of energy conversion are incorporated, along with the requirements of materials for this process. Finally, a range of applications is presented, demonstrating the progression from fundamentals to applied science.

This essential resource describes the link between the basic physical properties of these materials and their applications in the field of energy harvest. It will be a useful resource for graduate students, early career researchers, academics and industry professionals working in areas related to energy conversion.

Key Features

  • Bridges the gap between the fundamentals and applications of ferroelectric and multiferroic materials for energy harvesting
  • Demonstrates how a range of nanomaterials play an important role in the creation of efficient energy harvesting systems
  • Provides new solutions for the fabrication of electronic devices for various applications

Readership

Graduate students, researchers in academia and industry working in areas related to energy conversion


Details

No. of pages:
304
Language:
English
Copyright:
© Elsevier 2019
Published:
Imprint:
Elsevier
Paperback ISBN:
9780128144992

Ratings and Reviews


About the Editors

Hideo Kimura Editor

Hideo Kimura is Leader of the Magnetoelectric Crystal Group, National Institute for Materials Science, Tsukuba, Japan. His research focuses on antiferromagnetic oxide single crystals for magnetic refrigeration, nonlinear optical single crystals, microgravity science, piezoelectric and ferroelectric crystals, and multiferroic thin films. In the past five years he has co-authored 29 papers and four books.

Affiliations and Expertise

Magnetoelectric Crystal Group, National Institute for Materials Science, Tsukuba, Japan

Zhenxiang Cheng Editor

Zhenxiang Cheng is Associate Professor at the Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, Australia, and a Future Fellow of the Australian Research Council. His research interests include dielectric, ferroelectric and multiferroic, materials and physics, magnetism and spintronics.

Affiliations and Expertise

Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, Australia

Tingting Jia Editor

Tingting Jia is a postdoctoral researcher in the Multifunctional Materials Group, Optical and Electronic Materials Unit, National Institute for Materials Science, Tsukuba, Japan. Her research focuses on multiferroic thin films, high-k gate dielectrics, and nonpolar wide gap semiconductor films and substrate. She has co-authored over 50 articles and conference proceedings, and has 10 patents.

Affiliations and Expertise

Multifunctional Materials Group, Optical and Electronic Materials Unit, National Institute for Materials Science, Tsukuba, Japan