Nanophysics: Coherence and Transport, Volume 81

1st Edition

Lecture Notes of the Les Houches Summer School 2004

Print ISBN: 9780444520548
eBook ISBN: 9780080461243
Imprint: Elsevier Science
Published Date: 2nd August 2005
Page Count: 640
92.95 + applicable tax
55.99 + applicable tax
69.95 + applicable tax
86.95 + applicable tax
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


The developments of nanofabrication in the past years have enabled the design of electronic systems that exhibit spectacular signatures of quantum coherence. Nanofabricated quantum wires and dots containing a small number of electrons are ideal experimental playgrounds for probing electron-electron interactions and their interplay with disorder. Going down to even smaller scales, molecules such as carbon nanotubes, fullerenes or hydrogen molecules can now be inserted in nanocircuits. Measurements of transport through a single chain of atoms have been performed as well. Much progress has also been made in the design and fabrication of superconducting and hybrid nanostructures, be they normal/superconductor or ferromagnetic/superconductor. Quantum coherence is then no longer that of individual electronic states, but rather that of a superconducting wavefunction of a macroscopic number of Cooper pairs condensed in the same quantum mechanical state. Beyond the study of linear response regime, the physics of non-equilibrium transport (including non-linear transport, rectification of a high frequency electric field as well as shot noise) has received much attention, with significant experimental and theoretical insights. All these quantities exhibit very specific signatures of the quantum nature of transport, which cannot be obtained from basic conductance measurements.

Basic concepts and analytical tools needed to understand this new physics are presented in a series of theoretical fundamental courses, in parallel with more phenomenological ones where physics is discussed in a less formal way and illustrated by many experiments.

Key Features

· Electron-electron interactions in one-dimensional quantum transport · Coulomb Blockade and Kondo physics in quantum dots · Out of equilibrium noise and quantum transport · Andreev reflection and subgap nonlinear transport in hybrid N/S nanosructures. · Transport through atomic contacts · Solid state Q-bits · Written by leading experts in the field, both theorists and experimentalists


Graduate students and researchers.

Table of Contents

Lecturers / Seminar speakers / Participants / Preface Course 1. Fundamental aspects of electron correlations and quantum transport in one-dimensional systems (Dmitrii L. Maslov) Seminar 1. Impurity in the Tomonaga-Luttinger model: A functional integral approach (I.V. Lerner and I.V. Yurkevich) Course 2. Novel phenomena in double layer twodimensional electron systems (J.P. Eisenstein) Course 3. Many–body theory of non–equilibrium systems (Alex Kamenev) Course 4. Non-linear quantum coherence effects in driven mesoscopic systems (V.E. Kravtsov) Course 5. Noise in mesoscopic physics (T. Martin) Seminar 2. Higher moments of noise (Bertrand Reulet) Course 6. Electron subgap transport in hybrid systems combining superconductors with normal or ferromagnetic metals (F.W.J. Hekking) Course 7. Low-temperature transport through a quantum dot (Leonid I. Glazman and Michael Pustilnik) Seminar 3. Transport through quantum point contacts (Yigal Meir) Course 8. Transport at the atomic scale: Atomic and molecular contacts (A. Levy Yeyati and J.M. van Ruitenbeek) Course 9. Solid State Quantum Bit Circuits (Daniel Estève and Denis Vion) Abstracts of seminars presented at the School


No. of pages:
© Elsevier Science 2005
Elsevier Science
eBook ISBN:
Hardcover ISBN:


"Do not expect easy reading, but thorough (and for the connoisseur finger licking) discussions that help filling the gaps in research (and even topical review) articles (...). Nevertheless, most chapters are less concerned about formal mathematical rigour rather than the all-important physical intuition necessary for contact with reality. Concluding, this book is a must for the determined graduate student, postdoc or researcher in theoretical nanoelectronics. It is recommended reading for a general readership that will appreciate the relatively complete coverage of recent developments. It is a useful reference volume for any group library in experimental and theoretical nanophysics". Gerrit E.W. Bauer, Technical university TU, Delft, The Netherlands.