COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Nanomaterials Design for Sensing Applications - 1st Edition - ISBN: 9780128145050, 9780128145067

Nanomaterials Design for Sensing Applications

1st Edition

Editor: Olena Zenkina
Paperback ISBN: 9780128145050
eBook ISBN: 9780128145067
Imprint: Elsevier
Published Date: 13th March 2019
Page Count: 365
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

  1. Colorimetric Sensors and Sensor Arrays
    2. Metal Oxide Nanostructures in Sensing
    3. Nanostructured Materials for RFID Sensors
    4. Organically Tailored Mesoporous Silicates Designed for Heavy Metal Sensing
    5. Nano-sized structured platforms for facile solid phase nanoextraction for (bio)chemical analysis
    6. Nanomaterial-based electrochemical sensors for environmental and energy applications
    7. Proteins in Nanosized Biosensors
    8. Stimuli-responsive Glyconanoparticles: It's Time to Get Sugar Smart
    9. Stimuli-Responsive Materials Based on Gold(I) Complexes
    10. Self-healing sensing platforms


Nanomaterials Design for Sensing Applications examines chemosensors, beginning with molecules that are able to respond to certain stimuli and then showing their assembly and incorporation into sensing materials. The mechanisms of their action for the detection of ions, specific molecules and biostructures, are also covered. A major theme is the affordability of sensors, with particular attention paid to inexpensive and reliable colorimetric sensors that can be read by the naked eye. The book also delves into the development of sensors that utilize existing RFID infrastructure and introduces a novel strategy for the development of self-healing sensing platforms.

This book will help readers develop a better understanding of the types of materials used for sensing at the nano level, while also providing an insightful overview on recent advances in this important area.

Key Features

  • Demonstrates how the use of nanomaterials allows for the creation of cheaper, more reliable sensors
  • Shows how metal oxide nanostructures are used as both sensors and supports for embedded organic and organometallic sensing molecules
  • Explores a novel sensing methodology resulting from the integration of nanostructured sensors into radio frequency identification tags


Materials Scientists and Engineers in academia and industry R&D


No. of pages:
© Elsevier 2019
13th March 2019
Paperback ISBN:
eBook ISBN:

Ratings and Reviews

About the Editor

Olena Zenkina

Olena V. Zenkina studied chemical engineering at NTU"KPI", Kharkiv, Ukraine. After graduation, she joined the group of Prof. Milko van der Boom in the Weizmann Institute of Science, Rehovot, Israel. There she was working on her Ph.D. in chemistry exploring d-10 metals ring-walking over pi-conjugated systems. Her postdoctoral experience in the group of Prof. Cathleen M. Crudden at Queen's University, Kingston, Canada included the discovery of single crystal to single crystal transformations, development of novel oxygen sensors, and carbene self-assembled monolayers formation on gold surfaces. After accepting a position of Assistant Professor at the University of Ontario Institute of Technology in Oshawa, Canada, Dr. Zenkina is focused on synthetic methodologies for the creation of well-defined self-assembled architectures on various surface supports (transparent metal oxide surfaces, metal surfaces, paper, glass, etc.) and their application in microfabrication of molecular-based “smart” functional devices.

Affiliations and Expertise

Assistant Professor at University of Ontario Institute of Technology, Canada