Nanofabrication for Smart Nanosensor Applications

Nanofabrication for Smart Nanosensor Applications

1st Edition - June 16, 2020

Write a review

  • Editor-in-Chief: Kaushik Pal
  • Paperback ISBN: 9780128207024
  • eBook ISBN: 9780128235553

Purchase options

Purchase options
Available
DRM-free (Mobi, PDF, EPub)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

Nanofabrication for Smart Nanosensor Applications addresses the design, manufacture and applications of a variety of nanomaterials for sensing applications. In particular, the book explores how nanofabrication techniques are used to create more efficient nanosensors, examines their major applications in biomedicine and environmental science, discusses the fundamentals of how nanosensors work, explores different nanofabrication techniques, and comments on toxicity and safety issues relating to the creation of nanosensors using certain nanomaterial classes. This book is an important resource for materials scientists and engineers who want to make materials selection decisions for the creation of new nansensor devices.

Key Features

  • Summarizes current research and applications of a variety of nanofabrication techniques for the creation of efficient sensing devices
  • Provides readers with an understanding of surfaces and interfaces, a key challenge for those working on hybrid nanomaterials, carbon nanotubes, graphene, polymers and liquid crystal electro-optical imaging
  • Discusses the variability and sight recognition of biopolymers, such as DNA molecules, which offer a wide range of opportunities for the self-organization of nanostructures into much more complex patterns

Readership

Materials Scientists and Engineers in academia and R&D

Table of Contents

  • 1. Introduction to nanomaterials and nanomanufacturing for nanosensors
     1.1 Nanosensors
      1.1.1 Types of nanosensors
      1.1.2 Applications of nanosensors
     1.2 Nanomaterials for nanosensors
      1.2.1 Properties of nanomaterials for nanosensors
      1.2.2 Different nanomaterials for nanosensors
     1.3 Nanomanufacturing
      1.3.1 Nanomanufacturing processes
     1.4 Nanomanufacturing processes for nanosensors
      1.4.1 Electron beam lithography
      1.4.2 Focused ion beam lithography
      1.4.3 X-ray lithography
     1.5 Conclusions and future directions

    2. Features and complex model of gold nanoparticle fabrication for nanosensor applications
     2.1 Introduction
      2.1.1 Applications of nanoparticles
      2.1.2 Growth of gold nanoparticles
     2.2 Mathematical model of gold nanoparticle fabrication
      2.2.1 Governing equation of gold nanoparticle fabrication
      2.2.2 Nondimensionalized parameter for governing equations
      2.2.3 Discretization using finite difference method for gold nanoparticle fabrication problem
      2.2.4 Linear system equation formulation for gold nanoparticle fabrication
      2.2.5 Visualization of the mathematical model for gold nanoparticle fabrication
     2.3 Numerical implementation and parallelization for gold nanoparticle fabrication
      2.3.1 Numerical implementation
      2.3.2 Parallelization of iterative methods for solving one-dimensional mathematical model
      2.3.3 Parallel performance evaluation for fabricating gold nanoparticles
     2.4 Conclusion and recommendation

    3. Designing of novel nanosensors for environmental aspects
     3.1 Introduction
     3.2 ABCs of the design strategy for nano-enabled sensors
      3.2.1 A note on the signal transduction mechanism
      3.2.2 A few representative nanomaterials and recognition elements
     3.3 Pertinent attributes for the design of nano-enabled sensors for environmental monitoring
     3.4 Exemplary evidence of novel nanosensor design strategies for environmental applications
      3.4.1 Pathogen detections
      3.4.2 Detection of heavy metals
      3.4.3 Unraveling the presence of pesticides
     3.5 Practical snags and future perspectives on nano-enabled sensors for environmental monitoring
     3.6 Conclusion

    4. Applications and success of MIPs in optical-based nanosensors
     4.1 Introduction
     4.2 MIPs synthesis methods
      4.2.1 Synthesis from monomers in the presence of the template
      4.2.2 Production of MIPs by phase inversion using polymer precipitation
      4.2.3 Soft lithography or surface stamping
     4.3 Characterization studies of MIPs
     4.4 Application of MIPs in optical nanosensors
      4.4.1 Optical sensor
      4.4.2 Immunoassay/diagnostic applications
      4.4.3 Applications in detection of pharmaceuticals and drugs
      4.4.4 Applications in food and environmental sensing
     4.5 Challenges of MIPs for optical sensing systems
     4.6 Critiques and future outlook

    5. Recent developments in nanostructured metal oxide-based electrochemical sensors
     5.1 Introduction
     5.2 Types of sensors
      5.2.1 Chemical sensors
      5.2.2 Gas sensors
      5.2.3 Biosensors
     5.3 Electrochemical sensors: Construction, working, and principles
     5.4 Conclusion

    6. Nanosensors and nanobiosensors: Agricultural and food technology aspects
     6.1 Introduction
     6.2 Nanobiosensors
     6.3 General characteristics and categories of nanobiosensors
     6.4 Nanobiosensors in agriculture
     6.5 Detection by nanosensors
     6.6 Nanobiosensors in different food sectors
     6.7 Development of nanosensors in agrofood sector
     6.8 Application of nanosensors in food packaging
     6.9 Conclusions and future directions

    7. Nanosensors in biomedical and environmental applications: Perspectives and prospects
     7.1 Introduction
     7.2 Biosensors
      7.2.1 Fundamental blocks
      7.2.2 Types of biosensors
     7.3 Nanosensors
     7.4 Nanobiosensors
     7.5 Types of nanobiosensors
      7.5.1 Nanoparticle-based biosensors
      7.5.2 Nanotube-based biosensors
      7.5.3 Nanowire-based biosensors
      7.5.4 Cantilever-based biosensors
      7.5.5 Graphene-based biosensors
     7.6 Performance parameters of nanobiosensors
      7.6.1 Selectivity
      7.6.2 Sensitivity
      7.6.3 Dose-response curve
      7.6.4 Dynamic range
      7.6.5 Multiplex detection
     7.7 Applications of nanobiosensors
      7.7.1 Diagnostic purpose
      7.7.2 Environmental monitoring
      7.7.3 Nanomedicine
     7.8 Conclusions and future directions

    8. Nanosensors for better diagnosis of health
     8.1 Introduction
     8.2 Nanomaterials for biosensors
      8.2.1 Metal and metal oxide nanomaterials
      8.2.2 Carbon-based nanomaterials
      8.2.3 Nanocomposites
      8.2.4 Other novel nanomaterials
     8.3 Classification of biosensing nanomaterials
      8.3.1 Electrochemical biosensors
      8.3.2 Biosensors with field effect transistors
      8.3.3 Spectroscopic biosensors
      8.3.4 Latest novel biosensors
     8.4 Applications of nanomaterials in diagnosis of specific diseases
      8.4.1 Cancer
      8.4.2 Microbial infection
      8.4.3 Diabetes
      8.4.4 Other diseases
     8.5 Current challenges and future perspective
     8.6 Conclusion

    9. Nanomaterial-based gas sensor for environmental science and technology
     9.1 Introduction
     9.2 Types of sensors
      9.2.1 Gas sensor
      9.2.2 Biosensors
      9.2.3 Chemical sensor
     9.3 Materials used in nanosensors
      9.3.1 Metal sulfides
      9.3.2 Metal oxides
      9.3.3 Other nanomaterials
     9.4 Techniques for designing nanosensors
      9.4.1 Physical vapor deposition technique
      9.4.2 Chemical vapor deposition
      9.4.3 Screen printing
      9.4.4 Drop coating
      9.4.5 Spray pyrolysis
     9.5 Application in environmental science and technology
      9.5.1 Carbon monoxide sensor
      9.5.2 Carbon dioxide sensor
      9.5.3 Nitrogen oxide sensor
      9.5.4 Ammonia sensor
      9.5.5 Hydrogen sulfide sensor
     9.6 Conclusion and future perspectives

    10. Hybrid nanocomposites and their potential applications in the field of nanosensors/gas and biosensors
     10.1 Introduction
     10.2 Structures of nanomaterials
      10.2.1 Zero-dimensional structure (0-D)
      10.2.2 One-dimensional structure (1-D)
      10.2.3 Two-dimensional structure (2-D)
      10.2.4 Three-dimensional structure (3-D)
     10.3 Preparation of hybridized nanocomposites
      10.3.1 Solid-state synthesis
      10.3.2 Hydro-/solvothermal synthesis
      10.3.3 Sol-gel synthesis
      10.3.4 Chemical vapor deposition technique
      10.3.5 Microwave-assisted wet chemical method
     10.4 Invasion of hybridized nanocomposite materials
      10.4.1 Classification of hybrid nanocomposites
     10.5 Role of the gas sensor in various fields
     10.6 Requirements for a gas sensor
     10.7 Materials suitable for a gas sensor
     10.8 Recent developments in hybrid nanocomposite-based gas sensors
      10.8.1 Ammonia gas sensor
     10.9 Hybrid nanocomposites as biosensors
      10.9.1 Electrochemical/glucose/graphene-based biosensors
      10.9.2 Xanthine biosensors
      10.9.3 Cancer biosensor
      10.9.4 Food biosensors
      10.10 Conclusions, outlook, and future scope

    11. Design and fabrication of CNT/graphene-based polymer nanocomposite applications in nanosensors
     11.1 Introduction
     11.2 Materials and methods
      11.2.1 Materials
      11.2.2 Thin film processing
      11.2.3 Characterization techniques
      11.2.4 Finite element analysis
      11.2.5 Results and discussion

    12. Nanomaterials dispersed liquid crystalline self-assembly of hybrid matrix application towards thermal sensor
     12.1 Introduction
     12.2 Overview of liquid crystals
     12.3 Taxonomy of liquid crystals
      12.3.1 Thermotropic liquid crystal
      12.3.2 Lyotropic liquid crystal
      12.3.3 Functional properties and application of liquid crystal
     12.4 Important exploration of nanoscience and nanotechnology
     12.5 Drawbacks of nanomaterials
      12.5.1 Evaluation of nanomaterials from bulk materials
      12.5.2 Varieties of nanomaterials and their applications
      12.5.3 Dimensions of nanomaterials
     12.6 Nanomaterial dispersed liquid crystal
     12.7 Liquid crystal-based temperature sensor
      12.7.1 Scope of sensor
      12.7.2 Design and fabrication of nanomaterial dispersed liquid crystal (NLC) temperature sensor
      12.7.3 Experimental set-up, observation, and results
     12.8 Wireless liquid crystal temperature sensor
      12.8.1 Design of sensor
      12.8.2 Results and discussions
     12.9 Conclusions and outlook
     12.10 Benefits and future aspects

    13. Carbon-based nanomaterials as novel nanosensors
     13.1 Introduction
      13.1.1 Carbon-based nanomaterials
     13.2 Sensing properties
     13.3 Nanosensors
      13.3.1 Optical nanosensors
      13.3.2 Electromagnetic nanosensors
      13.3.3 Gas nanosensors
     13.4 CNT-based nanosensors
     13.5 Graphene-based nanosensors
     13.6 Diamond-based nanosensors
     13.7 Biosensors
      13.7.1 Graphene-based electrochemical biosensors
     13.8 Potential applications of carbon-based nanosensors
      13.8.1 Pharmaceutical analysis
      13.8.2 Bioimaging and biosensing applications
     13.9 Limitations and drawbacks of carbon-based nanosensors
      13.9.1 Sample preparation
      13.9.2 Lack of self-validation and standardization with real-life samples
      13.9.3 Nanotoxicity
      13.9.4 The risk assessment of exposures
      13.9.5 Product cost
     13.10 Conclusion
     
    14. Polymerized hybrid nanocomposite implementations of energy conversion cells device
     14.1 An overview of environmental science innovations
     14.2 Polymers
      14.2.1 Structure of polymers
      14.2.2 Properties of the polymer
      14.2.3 Thermal properties of polymers
     14.3 Composites
     14.4 Types of composite materials
      14.4.1 Fiber-reinforced composites
      14.4.2 Particulate composite
     14.5 Electrolytes
      14.5.1 Liquid electrolyte
      14.5.2 Solid electrolyte
      14.5.3 Polymer electrolyte
      14.5.4 Gel and polymer gel electrolyte
      14.5.5 Polymer nanocomposite and their classifications
      14.5.6 Investigation of polymer nanocomposites
     14.6 Transport mechanism in nanocomposite polymer electrolyte
      14.6.1 VTF equation
      14.6.2 Arrhenius equation
     14.7 Applications of nanocomposite polymer-gel electrolytes in environmentally friendly devices
      14.7.1 Hydrogen–oxygen fuel cell
      14.7.2 Solid-state rechargeable battery
      14.7.3 Sensors
      14.7.4 Supercapacitors
      14.7.5 Photoelectrochemical cells
      14.7.6 Solar cells
     14.8 Structural and ion transport studies in (100-x) PVdF+ xNH4SCN gel electrolyte
      14.8.1 Membrane fabrication
      14.8.2 Results and discussions
      14.8.3 Application of polymer nanocomposites in environmentally friendly devices
      14.8.4 Basics of fuel cells
      14.8.5 Working principle of fuel cells
      14.8.6 Polymer electrolyte membrane fuel cell (PEMFC)
      14.8.7 Application of fuel cell
     14.9 Conclusions and outlook
     14.10 Remarks and future prospects
      
    15. Smart polymer systems as concrete self-healing agents
     15.1 Introduction
     15.2 Self-healing property
     15.3 Concrete self-healing mechanisms
      15.3.1 Autogenous
      15.3.2 Mineral admixtures
      15.3.3 Bacteria
      15.3.4 Adhesive materials
     15.4 Polymers in concrete self-healing
      15.4.1 Poly (vinyl alcohol) (PVA)
      15.4.2 Poly (lactic acid) (PLA)
      15.4.3 Polystyrene (PS)
      15.4.4 Polyurethanes (PUs)
      15.4.5 Epoxy resin
      15.4.6 Polyacrylates
      15.4.7 Alginates
      15.4.8 Superabsorbent polymers (SAPs)
     15.5 Trends in concrete self-healing
     15.6 Final considerations

    16. Chemical engineering of protein cages and nanoparticles for pharmaceutical applications
     16.1 Introduction to chemical modification of proteins
     16.2 Uncommon viral protein cages
      16.2.1 Adenovirus
      16.2.2 Viruses as protein cages
      16.2.3 Qβ bacteriophage
     16.3 Nonviral protein cages
      16.3.1 Heat-shock proteins (Hsps)
      16.3.2 Ferritin
      16.3.3 Vault proteins (VPs)
     16.4 Residue-specific amino acid modification strategies
      16.4.1 Lysine
      16.4.2 Carboxyl
      16.4.3 Cystine
      16.4.4 Tyrosines
      16.4.5 Arginine
      16.4.6 Tryptophan
      16.4.7 Methionine
     16.5 Nanoparticles targeted for drug delivery
      16.5.1 Passive targeting
      16.5.2 Active targeting
      16.5.3 Advantages and disadvantages
      16.5.4 Applications

Product details

  • No. of pages: 472
  • Language: English
  • Copyright: © Elsevier 2020
  • Published: June 16, 2020
  • Imprint: Elsevier
  • Paperback ISBN: 9780128207024
  • eBook ISBN: 9780128235553

About the Editor in Chief

Kaushik Pal

Kaushik Pal is Research Professor in the Department of Nanotechnology, Bharath University, India. His research focuses on nanofabrication, functional materials, carbon nanotubes, and nanoscale sensing technologies.

Affiliations and Expertise

Department of Nanotechnology, Bharath University, India

About the Editor

Fernando Gomes Souza Junior

Fernando Gomes Souza Junior is Associate Professor in Civil Engineering at the Federal University of Rio de Janeiro, Brazil. His research focuses in the areas of the use of renewable resources and nanocomposites in sensors, drug delivery and environmental recovery.

Affiliations and Expertise

Federal University of Rio de Janeiro, Brazil

Ratings and Reviews

Write a review

There are currently no reviews for "Nanofabrication for Smart Nanosensor Applications"