Nanocrystalline Titanium - 1st Edition - ISBN: 9780128145999

Nanocrystalline Titanium

1st Edition

Editors: Halina Garbacz Irina Semenova Sergey Zherebtsov Maciej Motyka
Paperback ISBN: 9780128145999
Imprint: Elsevier
Published Date: 1st September 2018
Page Count: 316
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

Section 1. Nanocrystalline titanium produced by SPD technigues
1.1. High pressure torsion (HPT) and equal-channel angular pressing (ECAP)
1.2. Combine processing ECAP+TMT
1.3. Hydrostatic extrusion (HE)
1.4. Friction-stir processing
1.5. Production of bulk nanocrystalline preforms by conventional methods of metalforming

Section 2. Properties of nanocrystalline titanium determining its applications
2.1. Mechanical properties
2.2. Novel efforts to strengthening – superstrength
2.3. Corrosion resistance
2.4. Biological properties
2.5. Tribology
2.6. Machinability
2.7. Dental application


Description

Grain refinement in metallic materials enables the effective enhancement of their strength and the achievement of unique chemical and physical properties. The majority of techniques for grain refinement in metals are severe plastic deformation (SPD) methods like high pressure torsion (HPT) and equal-channel angular pressing (ECAP). Enhanced strengthening effect is especially advisable for metals which in a solution strengthened state lose their valuable properties.

Nanocrystalline Titanium has been written with the main goal of discussing the general features of nanocrystalline titanium production by various SPD methods and to compare their microstructure and properties. The intention of the book’s authors is also to characterize the physical, chemical and mechanical properties of ultrafine grained titanium and to indicate which are crucial for their application. Titanium alloys are characterized by high specific strength combined with excellent corrosion resistance.

Mechanical properties of pure (or commercial purity - CP) titanium are much lower. SPD methods are providing to be an effective way for increasing its strength even up to level typical for structural titanium alloys. This book will prove useful for academics and professionals studying the behaviour of metallic materials.

Key Features

  • Discusses various SPD techniques and their applications for titanium
  • Previews the limitations of SPD methods use for titanium and the problems related to it production using this method
  • Characterizes the physical, chemical and mechanical properties of ultrafine grained titanium and indicates which are crucial for its production applications

Readership

Academics, researchers and professionals in the fields of materials science, engineering and chemistry


Details

No. of pages:
316
Copyright:
© Elsevier 2019
Published:
Imprint:
Elsevier
Paperback ISBN:
9780128145999

Ratings and Reviews


About the Editors

Halina Garbacz Editor

Halina Garbacz, Ph.D. is a professor with the Materials Science and Engineering Department at the Warsaw University of Technology, Warsaw, Poland. Her main achievements are related to the fabrication of ultrafine grained materials using the method of severe plastic deformation and understanding phenomena that determine their performance. She combines experience in material processing with the expertise in materials characterization in nano-scale using advanced microscopic techniques. Her scientific interest is focused on the relationship between microstructure and properties (mechanical, tribological, corrosion resistance) of metals. She is an author or co-author of more than 140 scientific papers and 6 books (4 book chapters). Her achievements in the field of industrial property rights has been confirmed by 9 patents. She is a laureate of Prize from the Rector of the Warsaw University of Technology for scientific achievement (2010, 2012, 2014).

Affiliations and Expertise

Warsaw University of Technology, Poland

Irina Semenova Editor

Irina P. Semenova, Ph.D. is a Leading Researcher at the Institute of Physics of Advanced Materials and Professor with the Ufa State Aviation Technical University, Russia. Dr. Semenova has authored numerous research articles, most notably on the topic of severe plastic deformation

Affiliations and Expertise

Researcher, Institute of Physics of Advanced Materials, Ulfa, Russia

Sergey Zherebtsov Editor

Dr. Sergey Zherebtsov is the Head of the Department of Materials Science and Technology at the Belgorod State University, Russia. His research areas relate to the Formation of ultrafine-grain microstructure in titanium and titanium alloys via warm large plastic working, as well as extensive TEM/SEM/EBSD studies of structural changes resulting in grain refinement during large strain deformation; effect of plastic working on evolution of interphase and grain boundaries and evaluation of mechanical properties of ultrafine grained metals and alloys.

Affiliations and Expertise

Head, Department of Materials Science and Nanotechnology, Belgorod State University, Russia

Maciej Motyka Editor

Maciej Motyka, Ph.D. serves as an Associate Professor with the Department of Materials Science, Rzeszow University of Technology, Poland. Dr. Motyka’s area of interest include: the relationships between processing, microstructure and mechanical properties of the advanced structural materials. Dr. Motyka’s main activity is focused on hot plasticity and fine-structure superplasticity phenomena in titanium alloys; as well as the characterization of ultrafine-grained materials –submicrocrystalline aluminium alloys and nanocrystalline titanium alloys – obtained by plastic consolidation and severe plastic deformation methods

Affiliations and Expertise

Associate Professor, Rzeszow University of Technology, Poland