Nano- and Microfabrication for Industrial and Biomedical Applications

Nano- and Microfabrication for Industrial and Biomedical Applications

2nd Edition - June 12, 2016

Write a review

  • Author: Regina Luttge
  • Hardcover ISBN: 9780323378284
  • eBook ISBN: 9780323389280

Purchase options

Purchase options
Available
DRM-free (Mobi, EPub, PDF)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

Nano- and Microfabrication for Industrial and Biomedical Applications, Second Edition, focuses on the industrial perspective on micro- and nanofabrication methods, including large-scale manufacturing, the transfer of concepts from lab to factory, process tolerance, yield, robustness, and cost. The book gives a history of miniaturization and micro- and nanofabrication, and surveys industrial fields of application, illustrating fabrication processes of relevant micro and nano devices. In this second edition, a new focus area is nanoengineering as an important driver for the rise of novel applications by integrating bio-nanofabrication into microsystems. In addition, new material covers lithographic mould fabrication for soft-lithography, nanolithography techniques, corner lithography, advances in nanosensing, and the developing field of advanced functional materials. Luttge also explores the view that micro- and nanofabrication will be the key driver for a "tech-revolution" in biology and medical research that includes a new case study that covers the developing organ-on-chip concept.

Key Features

  • Presents an interdisciplinary approach that makes micro/nanofabrication accessible equally to engineers and those with a life science background, both in academic settings and commercial R&D
  • Provides readers with guidelines for assessing the commercial potential of any new technology based on micro/nanofabrication, thus reducing the investment risk
  • Updated edition presents nanoengineering as an important driver for the rise of novel applications by integrating bio-nanofabrication into microsystems

Readership

Engineers and scientists working in the fields of micro- and nanofabrication, corportate R&D groups, technology managers and others involved in product and process design of micro- and nanotechnologies; technology transfer officers and technology watchers working for NGOs and government departments; advanced students from a range of engineering and science backgrounds studying this interdisciplinary field; and undergraduate students following a course on micro- and nanofabrication

Table of Contents

  • Chapter 1: Introduction

    • Abstract
    • 1.1 Philosophy of Micro/Nanofabrication
    • 1.2 The Industry-Science Dualism
    • 1.3 Industrial Applications
    • 1.4 Purpose and Organization of This Book

    Chapter 2: Basic technologies for microsystems

    • Abstract
    • 2.1 Photolithography
    • 2.2 Thin Films
    • 2.3 Silicon Micromachining
    • 2.4 Industrially Established Nonsilicon Processing
    • 2.5 Soft-Lithography
    • 2.6 Nanolithography
    • 2.7 Conclusions

    Chapter 3: Advanced microfabrication methods

    • Abstract
    • 3.1 LIGA
    • 3.2 Deep Reactive Ion Etching
    • 3.3 Microceramic Processing
    • 3.4 Speciality Substrates and Their Applications
    • 3.5 Advanced Non-Silicon and Silicon Hybrid Devices
    • 3.6 Planar Lightwave Circuits
    • 3.7 Fabrication Example of an Integrated Optical Device
    • 3.8 Integrated Optics in the MST Foundry Service Industry: A Case Study
    • 3.9 Biohybrid Devices: A New Trend
    • 3.10 Conclusions

    Chapter 4: Nanotechnology

    • Abstract
    • 4.1 Top-Down, Bottom-Up
    • 4.2 Nanomaterials
    • 4.3 Where Are We?
    • 4.4 Where to Go From Here?

    Chapter 5: Micromechanical transducers

    • Abstract
    • 5.1 Application Fields
    • 5.2 Overview of Materials
    • 5.3 Thick and Thin Film Hybrid Materials
    • 5.4 Microactuation
    • 5.5 Packaged Sensors
    • 5.6 Silicon as a Mechanical Material in Resonant Microdevices
    • 5.7 Information Society
    • 5.8 Conclusions

    Chapter 6: Chemical and biological sensors at component and device level

    • Abstract
    • 6.1 Application Field
    • 6.2 Sensor Principles for the Collection of (Bio)Chemical Information
    • 6.3 Integrated chemFET Device: Case Study of a Semiconductor-Based pH Sensor Development
    • 6.4 Integrated Clinical Diagnostics: A Medical Application for Electrochemical Sensor Arrays
    • 6.5 Conclusions

    Chapter 7: Microfluidic components, devices and integrated lab-on-a-chip systems

    • Abstract
    • 7.1 Application Fields
    • 7.2 Microfluidic Components
    • 7.3 Controlled Transport by Diffusion
    • 7.4 Integration for Microfluidic Transport, Sensing and Dispensing
    • 7.5 Lab-on-a-Chip
    • 7.6 Device-to-World Connections: The MATAS Concept
    • 7.7 From the Lab Bench to Industry: Microchip Capillary Electrophoresis
    • 7.8 Organ-on-Chip: A Paradigm Shift in Medical and Pharmaceutical Sciences
    • 7.9 Conclusions

    Chapter 8: Microfabrication for novel products in drug delivery: An example

    • Abstract
    • 8.1 Microneedle Research at University of Twente and Its Spin-Off
    • 8.2 MNA-4-Insulin: A Brief Evaluation
    • 8.3 Conclusions

    Chapter 9: Reflective comments and conclusions

    • Abstract
    • 9.1 Environmental Aspects
    • 9.2 Health Aspects of μNP
    • 9.3 Conclusions

Product details

  • No. of pages: 278
  • Language: English
  • Copyright: © William Andrew 2016
  • Published: June 12, 2016
  • Imprint: William Andrew
  • Hardcover ISBN: 9780323378284
  • eBook ISBN: 9780323389280

About the Author

Regina Luttge

Luttge studied Applied Sciences in Germany (1989-1993). She had been working as an engineering researcher at Institut für Mikrotechnik in Mainz, Germany, for nearly 5 years prior to starting her PhD studies in Microsystems Technologies at Imperial College in 1999, London, UK. In 2003, Luttge was awarded a PhD from University of London on the development of fabrication technology for micro-optical scanners. Switching her research interest to microfluidics applications, Luttge had been working for 12 years at University of Twente’s MESA+ Institute for Nanotechnology, The Netherlands, first as a senior scientist and since 2007 as an assistant professor prior to joining TU/e. Based on her established scientific profile in Nanoengineering for Medicine and Biology, Luttge has been appointed associate professor in the Microsystems Group at the Department of Mechanical Engineering in June 2013.

Affiliations and Expertise

Associate Professor, Microsystems Group, Dept of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

Ratings and Reviews

Write a review

There are currently no reviews for "Nano- and Microfabrication for Industrial and Biomedical Applications"