Multiscale Biomechanics - 1st Edition - ISBN: 9781785482083, 9780081021156

Multiscale Biomechanics

1st Edition

Editors: Jean-Francois Ganghoffer
eBook ISBN: 9780081021156
Hardcover ISBN: 9781785482083
Imprint: ISTE Press - Elsevier
Published Date: 17th January 2018
Page Count: 582
Sales tax will be calculated at check-out Price includes VAT/GST
15% off
15% off
15% off
15% off
170.00
144.50
149.00
126.65
195.00
165.75
160.86
136.73
Unavailable
Price includes VAT/GST
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Multiscale Biomechanics provides new insights on multiscale static and dynamic behavior of both soft and hard biological tissues, including bone, the intervertebral disk, biological membranes and tendons. The physiological aspects of bones and biological membranes are introduced, along with micromechanical models used to compute mechanical response. A modern account of continuum mechanics of growth and remodeling, generalized continuum models to capture internal lengths scales, and dedicated homogenization methods are provided to help the reader with the necessary theoretical foundations. Topics discussed include multiscale methods for fibrous media based on discrete homogenization, generalized continua constitutive models for bone, and a presentation of recent theoretical and numerical advances.

In addition, a refresher on continuum mechanics and more advanced background related to differential geometry, configurational mechanics, mechanics of growth, thermodynamics of open systems and homogenization methods is given in separate chapters. Numerical aspects are treated in detail, and simulations are presented to illustrate models.

This book is intended for graduate students and researchers in biomechanics interested in the latest research developments, as well as those who wish to gain insight into the field of biomechanics.

Key Features

  • Provides a clear exposition of multiscale methods for fibrous media based on discrete homogenization and the consideration of generalized continua constitutive models for bone
  • Presents recent theoretical and numerical advances for bone remodeling and growth
  • Includes the necessary theoretical background that is exposed in a clear and self-contained manner
  • Covers continuum mechanics and more advanced background related to differential geometry, configurational mechanics, mechanics of growth, thermodynamics of open systems and homogenization methods

Readership

Researchers (from master level students to senior researchers) interested in multiscale models and numerical prediction tools for soft and hard living tissues. Students and researchers interested in modern approaches to formulate advanced constitutive models for living tissues, considering their static and evolutive (growth, remodeling) response

Table of Contents

Part 1. Theoretical Basis: Continuum Mechanics, Homogenization Methods, Thermodynamics of Growing Solid Bodies
1. Tensor Calculus Jean-François GANGHOFFER
2. Continuum Mechanics Jean-François GANGHOFFER
3. Constitutive Models of Soft and Hard Living Tissues Jean-François GANGHOFFER
4. Discrete Homogenization of Network Materials Jean-François GANGHOFFER and Khaled EL NADY
5. Mechanics and Thermodynamics of Volumetric and Surface Growth Jean-François GANGHOFFER

Part 2. Multiscale Bone Mechanics
6. Micropolar Models of Trabecular Bone Jean-François GANGHOFFER and Ibrahim GODA
7. Size-Dependent Dynamic Behavior of Trabecular Bone Jean-François GANGHOFFER, Ibrahim GODA, Rachid RAHOUADJ
8. Prediction of Size Effects in Bone Brittle and Plastic Collapse Jean-François GANGHOFFER and Ibrahim GODA
9. Multiscale Aspects of Bone Internal and External Remodeling Jean-François GANGHOFFER and Ibrahim GODA
10. Integrated Remodeling to Fatigue Damage Model of Bone Jean-François GANGHOFFER and Ibrahim GODA

Part 3. Mechanics of Soft Biological Tissues: The Intervertebral Disk, Biological Networks, Ligaments and Tendons
11. Micromechanics of the Intervertebral Disk Adrien BALDIT
12. Effective Mechanical Response of Biological Membranes Khaled EL NADY, Jean-François GANGHOFFER and Ibrahim GODA
13. Micromechanics of Ligaments and Tendons Cédric LAURENT

Details

No. of pages:
582
Language:
English
Copyright:
© ISTE Press - Elsevier 2018
Published:
Imprint:
ISTE Press - Elsevier
eBook ISBN:
9780081021156
Hardcover ISBN:
9781785482083

About the Editor

Jean-Francois Ganghoffer

Jean-François Ganghoffer is Professor at the University of Lorraine in Nancy, France, and researcher in LEM3, a research unit affiliated to CNRS. His main research topics concern the biomechanics of bone, homogenization methods for architectured materials, and the mechanics of generalized continua.

Affiliations and Expertise

University of Lorraine, Nancy, France

Ratings and Reviews