Description

Written by leading multiphase flow and CFD experts, this book enables engineers and researchers to understand the use of PBM and CFD frameworks. Population balance approaches can now be used in conjunction with CFD, effectively driving more efficient and effective multiphase flow processes. Engineers familiar with standard CFD software, including ANSYS-CFX and ANSYS–Fluent, will be able to use the tools and approaches presented in this book in the effective research, modeling and control of multiphase flow problems.

Key Features

  • Builds a complete understanding of the theory behind the application of population balance models and an appreciation of the scale-up of computational fluid dynamics (CFD) and population balance modeling (PBM) to a variety of engineering and industry applications in chemical, pharmaceutical, energy and petrochemical sectors
  • The tools in this book provide the opportunity to incorporate more accurate models in the design of chemical and particulate based multiphase processes
  • Enables readers to translate theory to practical use with CFD software

Readership

Practicing and R&D level engineers, graduate level researchers and students. Chemical and Process Engineering, Food and Pharmaceutical, Civil Engineering, Mechanical Engineering, Mining Engineering, Petroleum Engineering

Table of Contents

Preface

Foreword

Acknowledgments

Introduction

Chapter 1. Introduction

Abstract

1.1 Classification and Application of Multiphase Flows

1.2 Complexity of Multiphase Flows

1.3 Multiscale Characteristics of Multiphase Flows

1.4 Need of Population Balance Modeling for Multiphase Flows

1.5 Scope of this Book

Chapter 2. Computational Multiphase Fluid Dynamics Framework

Abstract

2.1 Eulerian Formulation Based on Interpenetrating Media Framework

2.2 Lagrangian Description on Discrete Element Framework

2.3 Differential, Generic and Integral Form of the Transport Equations for Multiphase Flow

2.4 Boundary Conditions for Multiphase Flow

2.5 Summary

Chapter 3. Population Balance Approach—A Generic Framework

Abstract

3.1 What is a Population Balance Approach?

3.2 Basic Definitions

3.3 Fundamentals of Population Balance Equation

3.4 Practical Considerations of Population Balance Framework

3.5 Comments on the Coupling Between Population Balance and Computational Multiphase Fluid Dynamics

3.6 Summary

Chapter 4. Mechanistic Models for Gas–Liquid/Liquid–Liquid Flows

Abstract

4.1 Introduction

4.2 Mechanisms and Kernels of Fluid Particle Coalescence

4.3 Mechanisms and Kernels of Fluid Particle Break up

4.4 Mechanisms and Kernels of Fluid Particle Coalescence and Break up for One-group, Two-group and Multigroup Formulation

4.5 Summary

Chapter 5. Mechanistic Models for Gas–Particle Liquid–Particle Flows

Abstract

5.1 Introduction

5.2 Mechanisms and Kernel Models of Solid Particle Aggregation

5.3 Mechanisms and Kernel Models of Solid Particle Breakage

5.4 Discrete Element Method—Soft-Sphere Model

5.5 Summary

Chapter 6. Solution Methods an

Details

No. of pages:
384
Language:
English
Copyright:
© 2014
Published:
Imprint:
Butterworth-Heinemann
Print ISBN:
9780080982298
Electronic ISBN:
9780080982335

About the authors

Guan Heng Yeoh

Guan Heng Yeoh is an Associate Professor at the School of Mechanical and Manufacturing Engineering, UNSW, and a Senior Research Scientist at ANSTO. He is the founder and Editor of the Journal of Computational Multiphase Flows and the Group Leader of Computational Thermal-Hydraulics of OPAL Research Reactor, ANSTO. He has approximately 180 publications including 7 books, 10 book chapters, 83 journal articles, and 80 conference papers with an H-index 16 and over 800 citations. His research interests are computational fluid dynamics (CFD); numerical heat and mass transfer; turbulence modelling using Reynolds averaging and large eddy simulation; combustion, radiation heat transfer, soot formation and oxidation, and solid pyrolysis in fire engineering; fundamental studies in multiphase flows: free surface, gas-particle, liquid-solid (blood flow and nanoparticles), and gas-liquid (bubbly, slug/cap, churn-turbulent, and subcooled nucleate boiling flows); computational modelling of industrial systems of single-phase and multiphase flows.

Affiliations and Expertise

Australian Nuclear Science and Technology Organisation

Dr. Chi Pok Cheung

Senior Lecturer, Royal Melbourne Institute Technology (RMIT) University, Australia

Affiliations and Expertise

Royal Melbourne Institute Technology (RMIT) University, Australia

Jiyuan Tu

Professor and Deputy Head, Research and Innovation, Department of Aerospace, Mechanical and Manufacturing Engineering, Royal Melbourne Institute of Technology (RMIT) University, Australia

Affiliations and Expertise

Royal Melbourne Institute Technology (RMIT) University, Australia