Multimodal Scene Understanding

Multimodal Scene Understanding

Algorithms, Applications and Deep Learning

1st Edition - July 16, 2019

Write a review

  • Editors: Michael Yang, Bodo Rosenhahn, Vittorio Murino
  • eBook ISBN: 9780128173596
  • Paperback ISBN: 9780128173589

Purchase options

Purchase options
DRM-free (PDF, EPub, Mobi)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order


Multimodal Scene Understanding: Algorithms, Applications and Deep Learning presents recent advances in multi-modal computing, with a focus on computer vision and photogrammetry. It provides the latest algorithms and applications that involve combining multiple sources of information and describes the role and approaches of multi-sensory data and multi-modal deep learning. The book is ideal for researchers from the fields of computer vision, remote sensing, robotics, and photogrammetry, thus helping foster interdisciplinary interaction and collaboration between these realms. Researchers collecting and analyzing multi-sensory data collections – for example, KITTI benchmark (stereo+laser) - from different platforms, such as autonomous vehicles, surveillance cameras, UAVs, planes and satellites will find this book to be very useful.

Key Features

  • Contains state-of-the-art developments on multi-modal computing
  • Shines a focus on algorithms and applications
  • Presents novel deep learning topics on multi-sensor fusion and multi-modal deep learning


Researchers and graduate students in computer vision, remote sensing, robotics, and photogrammetry

Table of Contents

  • 1. Introduction to Multimodal Scene Understanding
    Michael Ying Yang, Bodo Rosenhahn and Vittorio Murino
    2. Multi-modal Deep Learning for Multi-sensory Data Fusion
    Asako Kanezaki, Ryohei Kuga, Yusuke Sugano and Yasuyuki Matsushita
    3. Multi-Modal Semantic Segmentation: Fusion of RGB and Depth Data in Convolutional Neural Networks
    Zoltan Koppanyi, Dorota Iwaszczuk, Bing Zha, Can Jozef Saul, Charles K. Toth and Alper Yilmaz
    4. Learning Convolutional Neural Networks for Object Detection with very little Training Data
    Christoph Reinders, Hanno Ackermann, Michael Ying Yang and Bodo Rosenhahn
    5. Multi-modal Fusion Architectures for Pedestrian Detection
    Dayan Guan, Jiangxin Yang, Yanlong Cao, Michael Ying Yang and Yanpeng Cao
    6. ThermalGAN: Multimodal Color-to-Thermal Image Translation for Person Re-Identification in Multispectral Dataset
    Vladimir A. Knyaz and Vladimir V. Kniaz
    7. A Review and Quantitative Evaluation of Direct Visual-Inertia Odometry
    Lukas von Stumberg, Vladyslav Usenko and Daniel Cremers
    8. Multimodal Localization for Embedded Systems: A Survey
    Imane Salhi, Martyna Poreba, Erwan Piriou, Valerie Gouet-Brunet and Maroun Ojail
    9. Self-Supervised Learning from Web Data for Multimodal Retrieval
    Raul Gomez, Lluis Gomez, Jaume Gibert and Dimosthenis Karatzas
    10. 3D Urban Scene Reconstruction and Interpretation from Multi-sensor Imagery
    Hai Huang, Andreas Kuhn, Mario Michelini, Matthais Schmitz and Helmut Mayer
    11. Decision Fusion of Remote Sensing Data for Land Cover Classification
    Arnaud Le Bris, Nesrine Chehata, Walid Ouerghemmi, Cyril Wendl, Clement Mallet, Tristan Postadjian and Anne Puissant
    12. Cross-modal learning by hallucinating missing modalities in RGB-D vision
    Nuno Garcia, Pietro Morerio and Vittorio Murino

Product details

  • No. of pages: 422
  • Language: English
  • Copyright: © Academic Press 2019
  • Published: July 16, 2019
  • Imprint: Academic Press
  • eBook ISBN: 9780128173596
  • Paperback ISBN: 9780128173589

About the Editors

Michael Yang

He is Assistant Professor with University of Twente (the Netherlands), heading a group working on scene understanding. He received the PhD degree (summa cum laude) from University of Bonn (Germany) in 2011. His research interests are in the fields of computer vision and photogrammetry with specialization on scene understanding, deep learning, UAV vision, and multi-sensor fusion. He published over 90 articles in international journals and conference proceedings. He serves as co-chair of ISPRS working group II/5 Dynamic Scene Analysis, and recipient of the ISPRS President's Honorary Citation (2016) and Best Science Paper Award at BMVC 2016. Since 2016, he is a Senior Member of IEEE. He is regularly serving as program committee member of conferences and reviewer for international journals.

Affiliations and Expertise

Scene Understanding Group, University of Twente, The Netherlands

Bodo Rosenhahn

His works received several awards, including a DAGM-Prize 2002 , Dr.-Ing. Siegfried Werth Prize 2003, DAGM-Main Prize 2005, IVCNZ best student paper award , DAGM-Main Prize 2007, Olympus-Prize 2007, ICPRAM Best student paper award 2014, ICMC Best student paper award 2014, the WACV 2015 Challenge Award, the Günter Enderle Award (Eurographics) 2017 and the CVPR 2017 Multi-Object Tracking Challenge. In 2011, the European Commission awarded Bodo Rosenhahn with a 1.43 million Euros ERC-Starting Grant and in 2013 with a POC Grant. He published more than 180 research papers, journal articles and book chapters, holds more than 10 patents and edited several books.

Affiliations and Expertise

Leibniz University Hannover, Germany

Vittorio Murino

Full professor at the University of Verona, Italy, and director of the PAVIS (Pattern Analysis and Computer Vision) department at the Istituto Italiano di Tecnologia. He took the Laurea degree in Electronic Engineering in 1989 and a Ph.D. in Electronic Engineering and Computer Science in 1993 at the University of Genova, Italy. His main research interests include: computer vision and pattern recognition/machine learning, in particular, probabilistic techniques for image and video processing, with applications on video surveillance, biomedical image analysis and bioinformatics.

Affiliations and Expertise

Professor, University of Verona, Italy, and Director, PAVIS (Pattern Analysis and Computer Vision), Istituto Italiano di Tecnologia

Ratings and Reviews

Write a review

There are currently no reviews for "Multimodal Scene Understanding"