COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Multifunctional Photocatalytic Materials for Energy - 1st Edition - ISBN: 9780081019771, 9780081019788

Multifunctional Photocatalytic Materials for Energy

1st Edition

Editors: Zhiqun Lin Meidan Ye Mengye Wang
Paperback ISBN: 9780081019771
eBook ISBN: 9780081019788
Imprint: Woodhead Publishing
Published Date: 19th March 2018
Page Count: 344
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

1. Introduction: A perspective-Multifunctional photocatalytic materials for energy
Zhiqun Lin, Meidan Ye, Mengye Wang
2. Metal oxide powder photocatalysts
Mohammad Mansoob Khan
3. Metal oxide electrodes for photo-activated water splitting
Davide Barreca
4. Theoretical insights for improved photocatalytic activity
Victor Antonio de la Pena O'Shea
5. Energy band engineering of metal oxide for enhanced visible light absorption
Jiangtian Li
6. Graphene photocatalysts
Luisa Maria Pastrana Martinez Sr.
7. Carbon Nitride photocatalysts
Hongqui Sun
8. Graphene-based nanomaterials for solar cells
Syed Farooq Adil, Mujeeb Khan
9. Metal-based Semiconductor nanomaterials for solar cells
Dr. Wenxi Guo Sr.
10. Metal-based Semiconductor nanomaterials for photocatalysis
Raffaele Marotta, Roberto Andreozzi, Ilaria Di Somma, Danilo Russo, Laura Clarizia Sr.
11. Conjugated polymer and nanocrystal nanocomposites for photocatalytic hydrogen production and organic contaminants degradation
Bhaghavathi Parambath Vinayan, Eswaraiah Varrla, Rupali Nagar
12. Hybrid noble metal and semiconductor nanocomposites for plasmon-mediated photocatalysis
Yuekun Lai
13. Hybrid Z-scheme nanocomposites for photocatalysis
Kazuhiko Maeda
14. Ferroelectrics for photocatalysis
A Chithambararaj


Multifunctional Photocatalytic Materials for Energy discusses recent developments in multifunctional photocatalytic materials, such as semiconductors, quantum dots, carbon nanotubes and graphene, with an emphasis on their novel properties and synthesis strategies and discussions of their fundamental principles and applicational achievements in energy fields, for example, hydrogen generation from water splitting, CO2 reduction to hydrocarbon fuels, degradation of organic pollutions and solar cells. This book serves as a valuable reference book for researchers, but is also an instructive text for undergraduate and postgraduate students who want to learn about multifunctional photocatalytic materials to stimulate their interests in designing and creating advanced materials.

Key Features

  • Covers all aspects of recent developments in multifunctional photocatalytic materials
  • Provides fundamental understanding of the structure, properties and energy applications of these materials
  • Contains contributions from leading international experts in the field working in multidisciplinary subject areas
  • Focuses on advanced applications and future research advancements, such as graphene-based nanomaterials and multi-hybrid nanocomposites
  • Presents a valuable reference for researchers and students that stimulates interest in designing advanced materials for renewable energy resources


Material scientists, chemists and engineers working with photocatalytic materials, in particular context of energy and environmental applications


No. of pages:
© Woodhead Publishing 2018
19th March 2018
Woodhead Publishing
Paperback ISBN:
eBook ISBN:

Ratings and Reviews

About the Editors

Zhiqun Lin

Dr. Zhiqun Lin is currently Professor of Materials Science and Engineering at the Georgia Institute of Technology. He received his PhD degree in Polymer Science and Engineering from University of Massachusetts, Amherst in 2002. He did his postdoctoral research at University of Illinois at Urbana-Champaign. He joined the Department of Materials Science and Engineering at the Iowa State University as an Assistant Professor in 2004 and was promoted to Associate Professor in 2010. He moved to Georgia Institute of Technology in 2011, and become a Professor in 2014. His research interests include polymer-based nanocomposites, block copolymers, polymer blends, conjugated polymers, quantum dots (rods, tetrapods and wires), functional nanocrystals (metallic, magnetic, semiconducting, ferroelectric, multiferroic, upconversion and thermoelectric) of different architectures (plain, core/shell, hollow and Janus), solar cells (perovskite solar cells, organic-inorganic hybrid solar cells and dye sensitized solar cells), lithium ion batteries, hydrogen generation, hierarchically structured and assembled materials, and surface and interfacial properties. He has published more than 200 peer reviewed journal articles (with an h-index of 59), 10 book chapters, and 4 books. Currently, he serves as an Associate Editor for Journal of Materials Chemistry A, and an editorial advisory board member for Nanoscale. He is a recipient of Frank J. Padden Jr. Award in Polymer Physics from American Physical Society, an NSF Career Award, a 3 M Non-Tenured Faculty Award, and an invited participant at the National Academy of Engineering’s 2010 US Frontiers of Engineering Symposium. He became a Fellow of Royal Society of Chemistry in 2014 and a Japan Society for Promotion of Science (JSPS) Fellow in 2015. More information on his research can be found at

Affiliations and Expertise

School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, USA

Meidan Ye

Meidan Ye is an associate Professor in the Research Institute for Biomimetics and Soft Matter, Department of Physics, College of Physical Science and Technology at Xiamen University, China. She received her PhD in Physical Chemistry from the State Key Laboratory of Physical Chemistry of Solid Surfaces, and College of Chemistry and Chemical Engineering at Xiamen University in 2014. She studied in Department of Material Science and Engineering, Iowa State University, USA, as a visiting PhD student during 2010-2011. Her research interests include advanced nanostructured materials for energy and environment applications, such as perovskite solar cells, dye/quantum dot-sensitized solar cells, hydrogen production from photoelectrocatalytic water splitting, photocatalytic degradation of organic pollutants, supercapacitors, and electrochromic devices. Until now, she has published over 30 papers in some prestigious journals, including Journal of the American Chemical Society, Nano Letters, Advanced Materials, Advanced Energy Materials, and Materials Today. The citation of her papers is more than 1300 times, and the highest one is over 250 times. In addition, she has contributed two chapters in two books published by Springer recently

Affiliations and Expertise

Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen, China

Mengye Wang

Dr Mengye Wang is currently a postdoctoral fellow of Department of Applied Physics at The Hong Kong of Polytechnic University. She received her PhD degree in Physical Chemistry from Xiamen University, Xiamen, China in 2015. Her research interests include advanced materials for environmental and energy application, such as photocatalysis, electrocatalysis and solar cells. She serves as a Community Board Member for Materials Horizons. More information on her research can be found at

Affiliations and Expertise

Department of Applied Physics, The Hong Kong of Polytechnic University