Monte Carlo Methods and Codes for Nuclear Engineering Analysis

Monte Carlo Methods and Codes for Nuclear Engineering Analysis

1st Edition - June 1, 2019

Write a review

  • Editor: Christopher Perfetti
  • Paperback ISBN: 9780128154007

Purchase options

Purchase options
Available for Pre-Order
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

Monte Carlo Methods and Codes for Nuclear Engineering Analysis provides a comprehensive survey of the state-of-the-art in radiation transport methods used by Monte Carlo (MC) codes. It explores the real-world implementation of these methods in codes used by nuclear scientists and engineers, considering the advantages and disadvantages of the various techniques, design philosophies and algorithm implementations. After a foreword and introduction giving a brief history of Monte Carlo methods, code systems, and their applications in nuclear science and engineering, subsequent chapters describe the fundamentals of Monte Carlo radiation transport methods by dividing the field into a number of topics or focus areas. Subjects selected include potential geometry and particle tracking, nuclear data, variance reduction, time-dependent analysis and parallel computing. Each chapter presents a comprehensive survey of the state-of-the-art implementations, algorithms, and methodologies used by production-level Monte Carlo codes for the area. A concluding chapter provides a handy summary by briefly listing the methods used by key Monte Carlo codes for each focus area in several tables. This book is an essential guide to Monte Carlo methods and codes for nuclear scientists, engineers and code developers in academia and industry and students studying this topic.

Key Features

  • Discusses and compares the radiation transport methods in real-life Monte Carlo (MC) codes used by nuclear scientists and engineers
  • Presents, in one convenient volume, information previously scattered between conference papers, journal articles and code manuals, thus allowing MC code users to compare features and make an educated selection of codes
  • Presents content at a level that is appropriate for readers who are unfamiliar with the field, but then goes on to address the state-of-the-art

Readership

Researchers and code developers in academia working on Monte Carlo methods. Postgraduate students studying Monte Carlo methods with applications to nuclear science and engineering and their teachers. Nuclear engineering professionals working on projects requiring the use of MC methods and codes

Table of Contents

  • 1. Introduction to Monte Carlo Methods
    2. Fundamentals of the Monte Carlo Method
    3. Potential Geometry and Particle Tracking
    4. Nuclear Data Processing, Data Structures, Handling of Temperature-dependence
    5. Eigenvalue Source Convergence and Acceleration for Criticality Codes
    6. Importance-based Variance Reduction for Fixed Source Codes
    7. Tally Estimators, Tally Data Structures, and Reactor Physics Applications
    8. Time-Dependent Analysis Part 1: Depletion Calculations
    9. Time-Dependent Analysis

    Part 2: Transient/Multiphysics Simulations
    10. Sensitivity and Uncertainty Analysis Methods (Adjoint-based and Stochastic Methods)
    11. Approach to Parallel/High-Performance Computing
    12. Approaches for Validation and Verification
    13. Conclusions

Product details

  • No. of pages: 390
  • Language: English
  • Copyright: © Woodhead Publishing 2029
  • Published: June 1, 2019
  • Imprint: Woodhead Publishing
  • Paperback ISBN: 9780128154007

About the Editor

Christopher Perfetti

Dr. Christopher (Chris) Perfetti studied nuclear engineering at the University of Florida, where he obtained his Bachelors and Masters of Science degrees in Nuclear and Radiological Engineering. Chris then moved to the University of Michigan to pursue his PhD in Nuclear Engineering under the guidance of Professor Bill Martin. After obtaining his PhD in 2012, Chris began a postdoc appointment at ORNL under the mentorship of Dr. Brad Rearden, where he was converted to R&D staff in 2014. Chris is the Sensitivity and Uncertainty Analysis team lead for the SCALE Code System, and is involved with teaching several SCALE training courses. Chris is currently the Past Chair of the Oak Ridge/Knoxville Local Chapter of the American Nuclear Society. He is a member of ANS and a reviewer for Annals of Nuclear Energy, Nuclear Technology and Nuclear Science and Engineering.

Affiliations and Expertise

Sensitivity and Uncertainty Analysis team lead for the SCALE Code System, and SCALE training course instructor, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Ratings and Reviews

Write a review

There are currently no reviews for "Monte Carlo Methods and Codes for Nuclear Engineering Analysis"