COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Molecular and Nano Electronics: Analysis, Design and Simulation - 1st Edition - ISBN: 9780444527257, 9780080465838

Molecular and Nano Electronics: Analysis, Design and Simulation, Volume 17

1st Edition

Editor: Jorge Seminario
Hardcover ISBN: 9780444527257
eBook ISBN: 9780080465838
Imprint: Elsevier Science
Published Date: 24th October 2006
Page Count: 292
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

  1. Analysis of Programmable Molecular Electronic Systems (Yuefei Ma, J.M. Seminario).

    2. Bio-Molecular Devices for Terahertz Frequency Sensing (Ying Luo et al.).

    3. Charge Delocalization in (n,0) Model Carbon Nanotubes (P.A. Politzer et al.).

    4. Metal-Molecule-Semiconductor Junctions: An Ab Initio Analysis (L. Agapito, J.M. Seminario).

    5. Modelling Molecular Switches: a Flexible Molecule Anchored to a Surface (Bidisa Das, Shuji Abe).

    6. Semi-Empirical Simulation of Carbon Nanotube Properties under Electronic Perturbations (Yan Li, Umberto Ravaioli).

    7. Nonequilibrium Green's Function Modeling of the Quantum Transport of Molecular Electronic Devices (Pawel Pomorski et al.).

    8. The gDFTB Tool for Molecular Electronics (A. Pecchia et al.).

    9. Theory of Quantum Electron Transport through Molecules as the Bases of Molecular Devices (M. Tsukada et al.).

    10. Time-dependent Transport Phenomena (G. Stefanucci et al.).


The aim of Molecular and Nano Electronics: Analysis, Design and Simulation is to draw together contributions from some of the most active researchers in this new field in order to illustrate a theory guided-approach to the design of molecular and nano-electronics. The field of molecular and nano-electronics has driven solutions for a post microelectronics era, where microelectronics dominate through the use of silicon as the preferred material and photo-lithography as the fabrication technique to build binary devices (transistors). The construction of such devices yields gates that are able to perform Boolean operations and can be combined with computational systems, capable of storing, processing, and transmitting digital signals encoded as electron currents and charges. Since the invention of the integrated circuits, microelectronics has reached increasing performances by decreasing strategically the size of its devices and systems, an approach known as scaling-down, which simultaneously allow the devices to operate at higher speeds.

Key Features

  • Provides a theory-guided approach to the design of molecular and nano-electronics
    * Includes solutions for researchers working in this area
    * Contributions from some of the most active researchers in the field of nano-electronics


Of interest to all levels of researchers in molecular and nano-electronics.


No. of pages:
© Elsevier Science 2006
24th October 2006
Elsevier Science
Hardcover ISBN:
eBook ISBN:

Ratings and Reviews

About the Editor

Jorge Seminario

Affiliations and Expertise

Department of Chemical Engineering, Texas A&M University, College Station, TAMU 3122, TX, USA