Molecular Anatomy of Cellular Systems - 1st Edition - ISBN: 9780444507396, 9780080536743

Molecular Anatomy of Cellular Systems, Volume 22

1st Edition

Editors: I. Endo I. Yamaguchi T. Kudo H. Osada T. Shibata
eBook ISBN: 9780080536743
Hardcover ISBN: 9780444507396
Imprint: Elsevier Science
Published Date: 20th August 2002
Page Count: 240
Tax/VAT will be calculated at check-out Price includes VAT (GST)
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
146.00
102.20
102.20
102.20
102.20
102.20
116.80
116.80
100.00
70.00
70.00
70.00
70.00
70.00
80.00
80.00
160.00
112.00
112.00
112.00
112.00
112.00
128.00
128.00
124.00
86.80
86.80
86.80
86.80
86.80
99.20
99.20
Unavailable
Price includes VAT (GST)
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

Preface. Part I. Cellular Functions. Stress meets development in p38 MAP kinase (T. Sudo, M. Maruyama, H. Osada). Molecular dissection of cytotoxic functions mediated by T cells (T. Kataoka, K. Nagai). Molecular imaging of the cytoskeleton using GFP-actin fluorescence microscopy (Y. Yan, G. Marriott). Golgi-acting drugs: inducers and inhibitors of Golgi dispersal as probes to analyze Golgi membrane dynamics (A. Takatsuki). Regulation of protein sorting and trafficking between the endoplasmic reticulum and the Golgi apparatus in yeast (A. Nakano). An unexpected gift from fungicide metabolism studies: blasticidin S deaminase (BSD) from Aspergillus terreus (M. Kimura et al.). Isolation and analysis of genes from phytopathogenic fungi (T. Motoyama et al.). A novel type of Na+/H+ antiporter: its unique characteristics and function (S. Kosono, M. Kitada, T. Kudo). Part II. Nuclear Functions. Genetic analysis of the genes involved in mitosis in fission yeast Schizosaccharomyces pombe (Y. Nakaseko, M. Yanagida). Intergenomic transcriptional interplays between plastid as a cyanobacterial symbiont and nucleus (H. Takahashi, K. Tanaka). From viral RNA genome to infectious ribonucleoprotein complexes through RNA replication (K. Nagata). Mechanisms of regulation of eukaryotic homologous DNA recombination (T. Shibata, K. Mizuno, K. Ohta). Part III. Protein Functions. Studies on photoreactive enzyme - nitrile hydratase (I. Endo, M. Odaka). Structural and functional analyses of proteins involved in translation, DNA recombination, chromosome architecture, and signal transduction (H. Kurumizaka, S. Yokoyama). The importance of the hydrophobic pocket in actin subdomain 4 for Ca2+-activation of actin-activated myosin ATPase in the presence of Tropomyosin-Troponin (T. Wakabayashi et al.). Physiological functions and molecular structures of new types of hemoproteins (Y. Shiro et al.). Unity and diversity in biological oxidation (J.A. Duine). Index of authors. Index of key words.


Description

In this book, the progress during the last ten years is reviewed and future plans outlined to realize and establish the concept of design in the biological sciences.

Design is a leading concept as well as the principal motivation for the creation of artificial systems. A successful design generally requires that the structures and functions of the elements that constitute the system as well as the principles that determine how the elements cooperate together to create function be fully understood. These requirements have not been satisfied within the fields of biotechnology and medicine. Compared to the recent emergence of artificial systems, living organisms acquired their present day structures and functions through evolution over three to four billion years. Despite the fact that the design of living organisms is recorded in the DNA sequence, our understanding of the structures and functions of the elements that constitute living organisms is very limited.

To fulfill the requirements, the following approaches were initiated under a ten-year project entitled "Biodesign Research". Firstly, we tried to isolate and characterize the functional elements that constitute the organelles of various organisms. Secondly, we tried to reconstitute systems that reproduce biological functions in vitro from individual elements in order to understand how the elements cooperate together to yield a function. Thirdly, we attempted to resolve biological structures at various resolutions ranging from the atomic to the cellular level to further our knowledge about the fundamental principles that various functions at the molecular level and to design artificial systems.


Details

No. of pages:
240
Language:
English
Copyright:
© Elsevier Science 2002
Published:
Imprint:
Elsevier Science
eBook ISBN:
9780080536743
Hardcover ISBN:
9780444507396

About the Editors

I. Endo Editor

I. Yamaguchi Editor

T. Kudo Editor

H. Osada Editor

T. Shibata Editor

Affiliations and Expertise

Biochemical Systems Lab., Riken, Saitama University, Hirosawa 2-1 Wako-shi, Saitama, 351-0198 Japan