Description

Modern gas turbine power plants represent one of the most efficient and economic conventional power generation technologies suitable for large-scale and smaller scale applications. Alongside this, gas turbine systems operate with low emissions and are more flexible in their operational characteristics than other large-scale generation units such as steam cycle plants. Gas turbines are unrivalled in their superior power density (power-to-weight) and are thus the prime choice for industrial applications where size and weight matter the most. Developments in the field look to improve on this performance, aiming at higher efficiency generation, lower emission systems and more fuel-flexible operation to utilise lower-grade gases, liquid fuels, and gasified solid fuels/biomass. Modern gas turbine systems provides a comprehensive review of gas turbine science and engineering.

The first part of the book provides an overview of gas turbine types, applications and cycles. Part two moves on to explore major components of modern gas turbine systems including compressors, combustors and turbogenerators. Finally, the operation and maintenance of modern gas turbine systems is discussed in part three. The section includes chapters on performance issues and modelling, the maintenance and repair of components and fuel flexibility.

Modern gas turbine systems is a technical resource for power plant operators, industrial engineers working with gas turbine power plants and researchers, scientists and students interested in the field.

Key Features

  • Provides a comprehensive review of gas turbine systems and fundamentals of a cycle
  • Examines the major components of modern systems, including compressors, combustors and turbines
  • Discusses the operation and maintenance of component parts

Readership

Professionals, academics and researchers focusing on the efficient provision of energy.

Table of Contents

Contributor contact details

Woodhead Publishing Series in Energy

Part I: Overview of modern gas turbine systems

Chapter 1: Introduction to gas turbines

Abstract:

1.1 Introduction

1.2 The importance of gas turbines for worldwide CO2 reduction

1.3 Importance of gas turbines for the aviation sector

1.4 Importance of gas turbines for the power generation sector

1.5 Efficiency improvement: impact on other issues

1.5.1 Total life cycle costs: importance of efficiency measures

1.5.2 Technologies for improved gas turbine and system efficiency

1.6 Other trends in gas turbine technology

1.7 Market trends

1.8 Conclusion

Chapter 2: Overview of gas turbine types and applications

Abstract:

2.1 Introduction

2.2 Gas turbine types by application

2.3 Power generation

2.4 Aero-engines

2.5 Industrial turbines

2.6 Microturbines

2.7 Advantages and limitations

2.8 Future trends

Chapter 3: Fundamentals of gas turbine cycles: thermodynamics, efficiency and specific power

Abstract:

3.1 Introduction

3.2 Thermodynamic properties of gases

3.3 The Joule–Brayton cycle

3.4 Improvements to the simple cycle

3.5 Combined gas–steam cycles

3.6 Basics of blade cooling

3.7 Conclusion and future trends

Part II: Modern gas turbine systems and major components

Chapter 4: Compressors in gas turbine systems

Abstract:

4.1 Introduction: role of the compressor

4.2 Types of compressor systems

4.3 Stationary gas turbine compressor elements

4.4 Compressor characteristic parameters

4.5 Operational requirements inside a gas turbine

4.6 Compressor design process

4.7 Technological trends and special features

4.8 Acknowledgement

4.10 Appendix: vari

Details

No. of pages:
838
Language:
English
Copyright:
© 2013
Published:
Imprint:
Woodhead Publishing
Print ISBN:
9781845697280
Electronic ISBN:
9780857096067

About the editor

Peter Jansohn

Dr Peter Jansohn is Manager at the Combustion Research Laboratory, Paul Scherrer Institute, Switzerland.