Modelling Stock Market Volatility - 1st Edition - ISBN: 9780125982757, 9780080511870

Modelling Stock Market Volatility

1st Edition

Bridging the Gap to Continuous Time

Editors: Peter Rossi
eBook ISBN: 9780080511870
Hardcover ISBN: 9780125982757
Imprint: Academic Press
Published Date: 4th November 1996
Page Count: 485
Tax/VAT will be calculated at check-out
146.00
118.00
95.00
155.00
Unavailable
File Compatibility per Device

PDF, EPUB, VSB (Vital Source):
PC, Apple Mac, iPhone, iPad, Android mobile devices.

Mobi:
Amazon Kindle eReader.

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

This essay collection focuses on the relationship between continuous time models and Autoregressive Conditionally Heteroskedastic (ARCH) models and applications. For the first time, Modelling Stock Market Volatility provides new insights about the links between these two models and new work on practical estimation methods for continuous time models. Featuring the pioneering scholarship of Daniel Nelson, the text presents research about the discrete time model, continuous time limits and optimal filtering of ARCH models, and the specification and estimation of continuous time processes. This work will lead to a rapid growth in their empirical application as they are increasingly subjected to routine specification testing.

Key Features

  • Provides for the first time new insights on the links between continuous time and ARCH models
  • Collects seminal scholarship by some of the most renowned researchers in finance and econometrics
  • Captures complex arguments underlying the approximation and proper statistical modelling of continuous time volatility dynamics

Table of Contents

Understanding And Specifying The Discrete Time Model:

D.B. Nelson, Modelling Stock Market Volatility Changes.

D.B. Nelson, Stationarity and Persistence in the GARCH(I,I) Model.

D.B. Nelson, Conditional Heteroskedasticity in Asset Returns: A New Approach.

P.A. Braun, D.B. Nelson and A.M. Sunier, Good News, Bad News, Volatility, and Betas.

Continuous Time Limits And Optimal Filtering For ARCH Models:

D.B. Nelson, ARCH Models as Diffusion Approximations.

D.B. Nelson, Filtering and Forecasting with Misspecified ARCH Models I: Getting the Right Variance with the Wrong Model.

D.B. Nelson and D.P. Foster, Filtering and Forecasting with Misspecified ARCH Models II: Making the Right Forecast with the Wrong Model.

D.B. Nelson and D.P. Foster, Asymptotic Filtering Theory for Univariate ARCH Models.

D.B. Nelson, Asymptotic Filtering Theory for Multivariate ARCH Models.

D.B. Nelson and D.B. Nelson, Continuous Record Asymptotics for Rolling Sample Variance Estimators.

Specification and Estimation of Continuous Time Processes:

R.F. Engle and G.G.J. Lee, Estimating Diffusion Models of Stochastic Volatility.

A.R. Gallant and G. Tauchen, Specification Analysis of Continuous Time Models in Finance.

L.P. Hansen and J.A. Scheinkman, Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes.

Y.Ait-Sahalia, Nonparametric Pricing of Interest Rate Derivative Securities. Index.

Details

No. of pages:
485
Language:
English
Copyright:
© Academic Press 1996
Published:
Imprint:
Academic Press
eBook ISBN:
9780080511870
Hardcover ISBN:
9780125982757

About the Editor

Peter Rossi

Professor of Econometrics, Marketing, and Statistics at the University of Chicago's Graduate School of Business, Peter Rossi has made significant contributions to the fields of finance, microeconomics, and econometrics. Dr. Rossi held the Kellogg Research Chair at Northwestern University, was the IBM Scholar in the Graduate School of Business at Chicago, and has won a number of awards for his work.

Affiliations and Expertise

University of Massachusetts, Amherst, U.S.A.

Reviews

"Finance applications have led to a rebirth of interest in continuous time econometric modelling. This volume stresses the achievements of Dan Nelson and includes important contributions." --PETER M. ROBINSON, London School of Economics

"This volume contains some important contributions to a young but burgeoning literature and is a worthy tribute to Dan Nelson's research. Continuous-time econometrics has finally arrived!" --ANDREW W. LO, Harris & Harris Group Professor, MIT Sloan School of Management, Cambridge, Massachusetts.

"This volume provides much practical guidance for implementing continuous-time models using real-world data, recorded in discrete time. The articles offer methods and insignts relevant to modelling and estimating volatility in the stock market as well as other financial markets, such as fixed income and foreign exchange." --ROBERT F. STAMBAUGH, University of Pennsylvania

"This collection of path-breaking papers contains useful insights for a range of readers. For financial economists and others interested in modelling the behavior of volatility over time, Daniel Nelson's important work on exponential ARCH, EGARCH, conditional betas, and rolling estimators is here. For financial engineers and others who wish to apply these models to the pricing of derivative securities, the papers in this volume forge important links between the continuous time theoretical models and the discrete time empirical models used to estimate the crucial volatility process." --WAYNE E. FERSON, University of Washington

"This book is an essential companion for any graduate student or researcher working in financial econometrics. It contains key papers for better understanding volatility modeling of financial time series, especially the link between discrete-time models of the ARCH family and continuous-time stochastic volatility models. The book's first two-thirds contains seminal papers of Dan Nelson, a major contributor to the analysis of the link between the two types of models. A Central issue is the filtering performance provided by ARCH models for the continuous-time unobserved stochastic volatility. The book's final part presents major papers on specification and estimation of continuous-time processes. All of these reference papers will be read time and time again to absorb their full substance. The introduction by Tim Bollersley and Peter Rossi offers a clear organizing canvas that puts all of the papers in the proper perspective." --Rene Garcia, Universite de Montreal in JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION (June 2000)