Materials Science of Thin Films - 2nd Edition - ISBN: 9780125249751, 9780080491783

Materials Science of Thin Films

2nd Edition

Authors: Milton Ohring
eBook ISBN: 9780080491783
Hardcover ISBN: 9780125249751
Imprint: Academic Press
Published Date: 15th October 2001
Page Count: 794
Tax/VAT will be calculated at check-out
File Compatibility per Device

PDF, EPUB, VSB (Vital Source):
PC, Apple Mac, iPhone, iPad, Android mobile devices.

Amazon Kindle eReader.

Institutional Access


This is the first book that can be considered a textbook on thin film science, complete with exercises at the end of each chapter. Ohring has contributed many highly regarded reference books to the AP list, including Reliability and Failure of Electronic Materials and the Engineering Science of Thin Films. The knowledge base is intended for science and engineering students in advanced undergraduate or first-year graduate level courses on thin films and scientists and engineers who are entering or require an overview of the field.

Since 1992, when the book was first published, the field of thin films has expanded tremendously, especially with regard to technological applications. The second edition will bring the book up-to-date with regard to these advances. Most chapters have been greatly updated, and several new chapters have been added.


Advanced undergraduate and first-year graduate students in materials science and electrical engineering; researchers in industrial in-house courses, or short courses offered by professional societies.

Table of Contents

Foreword to First Edition Preface Acknowledgments A Historical Perspective Chapter 1 A Review of Materials Science 1.1. Introduction 1.2. Structure 1.3. Defects in Solids 1.4. Bonds and Bands in Materials 1.5. Thermodynamics of Materials 1.6. Kinetics 1.7. Nucleation 1.8. An Introduction to Mechanical Behavior 1.9. Conclusion Exercises References Chapter 2 Vacuum Science and Technology 2.1. Introduction 2.2. Kinetic Theory of Gases 2.3. Gas Transport and Pumping 2.4. Vacuum Pumps 2.5. Vacuum Systems 2.6. Conclusion Exercises References Chapter 3 Thin-Film Evaporation Processes 3.1. Introduction 3.2. The Physics and Chemistry of Evaporation 3.3. Film Thickness Uniformity and Purity 3.4. Evaporation Hardware 3.5. Evaporation Processes and Applications 3.6. Conclusion Exercises References Chapter 4 Discharges, Plasmas, and Ion-Surface Interactions 4.1. Introduction 4.2. Plasmas, Discharges, and Arcs 4.3. Fundamentals of Plasma Physics 4.4. Reactions in Plasmas 4.5. Physics of Sputtering 4.6. Ion Bombardment Modification of Growing Films 4.7. Conclusion Exercises References Chapter 5 Plasma and Ion Beam Processing of Thin Films 5.1. Introduction 5.2. DC, AC, and Reactive Sputtering Processes 5.3. Magnetron Sputtering 5.4. Plasma Etching 5.5. Hybrid and Modified PVD Processes 5.6. Conclusion Exercises References Chapter 6 Chemical Vapor Deposition 6.1. Introduction 6.2. Reaction Types 6.3. Thermodynamics of CVD 6.4. Gas Transport 6.5. Film Growth Kinetics 6.6. Thermal CVD Processes 6.7. Plasma-Enhanced CVD Processes 6.8. Some CVD Materials Issues 6.9. Safety 6.10. Conclusion Exercises References Chapter 7 Substrate Surfaces and Thin-Film Nucleation 7.1. Introduction 7.2. An Atomic View of Substrate Surfaces 7.3. Thermodynamic Aspects of Nucleation 7.4. Kinetic Processes in Nucleation and Growth 7.5. Experimental Studies of Nucleation and Growth 7.6. Conclusion Exercises References Chapter 8 Epitaxy 8.1. Introduction 8.2. Manifestations of Epitaxy 8.3. Lattice Misfit and Defects in Epitaxial Films 8.4. Epitaxy of Compound Semiconductors 8.5. High-Temperature Methods for Depositing Epitaxial Semiconductor Films 8.6. Low-Temperature Methods for Depositing Epitaxial Semiconductor Films 8.7. Mechanisms and Characterization of Epitaxial Film Growth 8.8. Conclusion Exercises References Chapter 9 Film Structure 9.1. Introduction 9.2. Structural Morphology of Deposited Films and Coatings 9.3. Computational Simulations of Film Structure 9.4. Grain Growth, Texture, and Microstructure Control in Thin Films 9.5. Constrained Film Structures 9.6. Amorphous Thin Films 9.7. Conclusion Exercises References Chapter 10 Characterization of Thin Films and Surfaces 10.1. Introduction 10.2. Film Thickness 10.3. Structural Characterization of Films and Surfaces 10.4. Chemical Characterization of Surfaces and Films 10.5. Conclusion Exercises References Chapter 11 Interdiffusion, Reactions, and Transformations in Thin Films 11.1. Introduction 11.2. Fundamentals of Diffusion 11.3. Interdiffusion in Thin Metal Films 11.4. Compound Formation and Phase Transformations in Thin Films 11.5. Metal-Semiconductor Reactions 11.6. Mass Transport in Thin Films under Large Driving Forces 11.7. Conclusion Exercises References Chapter 12 Mechanical Properties of Thin Films 12.1. Introduction 12.2. Mechanical Testing and Strength of Thin Films 12.3. Analysis of Internal Stress 12.4. Techniques for Measuring Internal Stress in Films 12.5. Internal Stresses in Thin Films and Their Causes 12.6. Mechanical Relaxation Effects in Stressed Films 12.7. Adhesion 12.8. Conclusion Exercises References Index


No. of pages:
© Academic Press 2002
Academic Press
eBook ISBN:
Hardcover ISBN:

About the Author

Milton Ohring

Dr. Milton Ohring, author of two previously acclaimed Academic Press books,The Materials Science of Thin Films (l992) and Engineering Materials Science (1995), has taught courses on reliability and failure in electronics at Bell Laboratories (AT&T and Lucent Technologies). From this perspective and the well-written tutorial style of the book, the reader will gain a deeper physical understanding of failure mechanisms in electronic materials and devices; acquire skills in the mathematical handling of reliability data; and better appreciate future technology trends and the reliability issues they raise.

Affiliations and Expertise

Stevens Institute of Technology, Hoboken, NJ, USA (Retired)


@from:Praise for the First Edition @qu:"There is a need for new, comprehensive texts and references in [advanced materials processing] and its subdisciplines. This has been especially true for thin films, and of the several recent books on the subject, Milton Ohring's extensive volume is without a doubt the best." @source:--NATURE @qu:"Ohring's very timely and excellent book fills a long-existing need in materials education at the graduate level....The book is very well written, presented, and illustrated. It will prove useful to the scientist or engineer in coatings, to the college senior working on a project, and especially to graduate students in materials science and engineering and to faculty involved in teaching or research in the area of thin films. An excellent acquisition for an academic library." @source:--CHOICE @qu:"The author writes in a fluent and engaging style which the student should have little trouble in understanding. His examples and technical insights do a great deal to make his text readable..." @source:--R.J. BORG @qu:"The combination of teaching, research, and industrial involvement has provide Profesor Ohring with a broad perspective of thin film science and technoloy and tremendous insight into the needs of students entering this exciting field. His insight and experience are quite evident in this textbook." @source:--JOHN L. VOSSEN, John Vossen Associates, Inc. @qu:"The text is easy to read, technically correct, unfolds in a logical manner, and includes a large number of important features related to thin films. I congratulate the author for proposing a thoughtful treatment of this increasingly popular subject." @source:--CHARLES L. BAUER, Carnegie Mellon University @qu:"Professor Milt Ohring has a long and unique perspective of thin film science from his dealings with academia and industry. This book represents his accumulated experiences of teaching and research. Thin film science is at the heart of many of our most advanced technologies. This book should prove invaluable not only to the university student but also to the professional who needs a broad overview of this important field." @source:--J.M. POATE, AT&T Bell Laboratories