Matching Theory

Matching Theory

1st Edition - June 1, 1986

Write a review

  • Authors: M.D. Plummer, L. Lovász
  • eBook ISBN: 9780080872322

Purchase options

Purchase options
DRM-free (PDF)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

This study of matching theory deals with bipartite matching, network flows, and presents fundamental results for the non-bipartite case. It goes on to study elementary bipartite graphs and elementary graphs in general. Further discussed are 2-matchings, general matching problems as linear programs, the Edmonds Matching Algorithm (and other algorithmic approaches), f-factors and vertex packing.

Table of Contents

  • 1. Matchings in Bipartite Graphs. Introduction. The Theorems of König, P. Hall and Frobenius. A Bipartite Matching Algorithm: The Hungarian Method. Deficiency, Surplus and a Glimpse of Matroid Theory. Some Consequences of Bipartite Matching Theorems. 2. Flow Theory. Introduction. The Max-Flow Min-Cut Theorem. Flow Algorithms. Flow-Equivalent Trees. Applications of Flow Theory to Matching Theory. Matchings, Flows and Measures. 3. Size and Structure of Maximum Matchings. Introduction. Tutte's Theorem, Gallai's Lemma and Berge's Formula. The Gallai-Edmonds Structure Theorem. Towards a Calculus of Barriers. Sufficient Conditions for Matchings of a Given Size. 4. Bipartite Graphs with Perfect Matchings. Introduction. Elementary Graphs and their Ear Structure. Minimal Elementary Bipartite Graphs. Decomposition into Elementary Bipartite Graphs. 5. General Graphs with Perfect Matchings. Introduction. Elementary Graphs: Elementary Properties. The Canonical Partition P(G). Saturated Graphs and Cathedrals. Ear Structure of 1-Extendable Graphs. More About Factor-Critical and Bicritical Graphs. 6. Some Graph-Theoretical Problems Related to Matchings. Introduction. 2-Matchings and 2-Covers. 2-Bicritical and Regularizable Graphs. Matchings, 2-Matchings and the König Property. Hamilton Cycles and 2-Matchings. The Chinese Postman Problem. Optimum Paths, Cycles, Joins and Cuts. 7. Matching and Linear Programming. Introduction. Linear Programming and Matching in Bigraphs. Matchings and Fractional Matchings. The Matching Polytope. Chromatic Index. Fractional Matching Polytopes and Cover Polyhedra. The Dimension of the Perfect Matching Polytope. 8. Determinants and Matchings. Introduction. Permanents. The Method of Variables. The Pfaffian and the Number of Perfect Matchings. Probabilistic Enumeration of Perfect Matchings. Matching Polynomials. More on the Number of Perfect Matchings. Two Applications to Physical Science. 9. Matching Algorithms. Introduction. The Edmonds Matching Algorithm. Weighted Matching. An Algorithm based upon the Gallai-Edmonds Theorem. A Linear Programming Algorithm for Matching. 10. The f-Factor Problem. Introduction. Reduction Principles. A Structure Theory for f-Factors. Realization of Degree Sequences. 11. Matroid Matching. Introduction. Formulations of the Matroid Matching Problem. The Main Theorem of Polymatroid Matching. Matching in Special Polymatroids. 12. Vertex Packing and Covering. Introduction. Critical Graphs. Vertex Packing Polytopes. Hypergraph Matching. Vertex Packing in Claw-Free Graphs. References. Indices.

Product details

  • No. of pages: 543
  • Language: English
  • Copyright: © North Holland 1986
  • Published: June 1, 1986
  • Imprint: North Holland
  • eBook ISBN: 9780080872322

About the Authors

M.D. Plummer

L. Lovász

Affiliations and Expertise

Princeton University, Department of Computer Science, USA

Ratings and Reviews

Write a review

There are currently no reviews for "Matching Theory"