Machine Learning Techniques for Space Weather
1st Edition
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Description
Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms.
Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields.
Key Features
- Collects many representative non-traditional approaches to space weather into a single volume
- Covers, in an accessible way, the mathematical background that is not often explained in detail for space scientists
- Includes free software in the form of simple MATLAB® scripts that allow for replication of results in the book, also familiarizing readers with algorithms
Readership
Space physicists, space weather professionals, computer scientists in related fields, information and data scientists in related fields
Table of Contents
Space Weather
1. Societal and Economic Importance of Space Weather
2. Data Availability and Forecast Products for Space Weather
Machine Learning
3. Information Theory
4. Regression
5. Classification
Applications
6. Geo-effectiveness of Solar Wind Parameter: An Information Theory Approach
7. Emergence of Dynamical Complexity in the Earth's Magnetosphere
8. Applications of NARMAX in Space Weather
9. Many Hours Ahead Prediction of Geomagnetic Storms with Gaussian Processes
10. Prediction of Mev Electron Fluxes with Autoregressive Models
11. Forecast of Solar Wind Parameters Using Kalman Filter
12. Artificial Neural Networks for Determining Magnetospheric Conditions
13. Reconstruction of Plasma Electron Density from Satellite Measurements via Artifical Neural Networks
14. Classification of Magnetospheric Particle Distributions via NN
15. Automated Solar Flare Prediction
16. Coronal Holes Detection using Supervised Classification
17. CME Classification via k-means Clustering Algorithm
Details
- No. of pages:
- 454
- Language:
- English
- Copyright:
- © Elsevier 2018
- Published:
- 22nd May 2018
- Imprint:
- Elsevier
- Paperback ISBN:
- 9780128117880
- eBook ISBN:
- 9780128117897
About the Editors
Enrico Camporeale
Enrico Camporeale earned his PhD in Space Plasma Physics at the Queen Mary University of London, and had postdoctoral experience at the Los Alamos National Laboratory. He is currently a staff member at Centrum Wiskunde & Informatica (CWI), the national research center for Mathematics and Computer Science in The Netherlands. His research activity covers a broad range of topics in plasma, space physics, and space weather, with emphasis on state-of-the-art numerical models. At CWI, he is leading a research group focused on machine learning techniques for space weather applications.
Affiliations and Expertise
Scientific Staff Member, Multiscale Dynamics Group, Dutch National Center for Mathematics and Computer Science
Simon Wing
Simon Wing has more than 20 years’ experience in space physics and space weather. He received his PhD from TU Eindhoven, Netherlands. He has authored and co-authored over 90 papers and over 250 talks, and developed the Wing Kp Model that runs at several space weather centers around the world. He is currently a principal staff physicist at the Johns Hopkins University Applied Physics Laboratory and an Adjunct Associate Professor at University of Maryland University College.
Affiliations and Expertise
Principal Staff Physicist, Johns Hopkins University Applied Physics Laboratory; Adjunct Associate Professor, University of Maryland University College.
Jay Johnson
Jay Johnson earned his Ph.D. degree in physics from the Massachusetts Institute of Technology and has held research positions at University of Alaska, Massachusetts Institute of Technology, and Princeton Plasma Physics Laboratory, where he served as Principal Research Physicist, co-director of the Princeton Center for Heliophysics, and Head of Space Physics from 2005-2016. He is currently a professor in the Department of Engineering and Computer Science at Andrews University, Michigan. He has published over 70 papers on theoretical plasma physics with emphasis on applications to space plasmas.
Affiliations and Expertise
Department of Engineering and Computer Science, Andrews University
Ratings and Reviews
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.