COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Liutex and Its Applications in Turbulence Research - 1st Edition - ISBN: 9780128190234

Liutex and Its Applications in Turbulence Research

1st Edition

Authors: Chaoqun Liu Hongyi Xu Xiaoshu Cai Yisheng Gao
Paperback ISBN: 9780128190234
Imprint: Academic Press
Published Date: 10th November 2020
Page Count: 458
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Liutex and Its Applications in Turbulence Research reviews the history of vortex definition, provides an accurate mathematical definition of vortices, and explains their applications in flow transition, turbulent flow, flow control, and turbulent flow experiments. The book explains the term "Rortex" as a mathematically defined rigid rotation of fluids or vortex, which could help solve many longstanding problems in turbulence research. The accurate mathematical definition of the vortex is important in a range of industrial contexts, including aerospace, turbine machinery, combustion, and electronic cooling systems, so there are many areas of research that can benefit from the innovations described here. 

This book provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence. Important theory and methodologies used for developing these laws are described in detail, including: the classification of the conventional turbulent boundary layer concept based on proper velocity scaling; the methodology for identification of the scales of velocity, temperature, and length needed to establish the law; and the discovery, proof, and strict validations of the laws, with both Reynolds and Prandtl number independency properties using DNS data. The establishment of these statistical laws is important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence.   

Key Features

  • Provides an accurate mathematical definition of vortices
  • Provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence
  • Explains the term “Rortex” as a mathematically defined rigid rotation of fluids or vortex
  • Covers the statistical laws important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence

Readership

Researchers and engineers working in fluids or thermal engineering

Table of Contents

  1. Short Introduction of Classical and Current Theories on Vortex and Turbulence Generation
    2. Vortex Definition and Identification – Three Generations on Vortex Definition
    3. Rortex – A New Mathematical Definition of Fluid Rotation
    4. Vortex Structure in Turbulent Boundary Layer – DNS and Experiment
    5. Linear Stability Analysis of Shear Layer and Rortex
    6. Large Vortex Formation
    7. Multiple Level Vortices Generation
    8. Relation between Vorticity and Rortex and Vorticity Structure in Flow Transition
    9. POD (SVD) and DMD Modes Analysis, Non-Symmetry and Chaos
    10. Correlation Analysis of Flow Fluctuation and Rortex
    11. Turbulent boundary layer and conventional law-of-the-wall
    12. New Observations and Findings of TBL in Modern DNS data
    13. Identification of Fluid and Thermal Scales for Developing Statistical Law
    14. Establishment of Unified Fluid and Thermal Law-of-the-Wall
    15. Proof and Validations of the Law by DNS data and Connotations of the Law

Details

No. of pages:
458
Language:
English
Copyright:
© Academic Press 2021
Published:
10th November 2020
Imprint:
Academic Press
Paperback ISBN:
9780128190234

About the Authors

Chaoqun Liu

Dr. Chaoqun Liu received both BS (1968) and MS (1981) from Tsinghua University, Beijing, China and PhD (1989) from University of Colorado at Denver, USA. He is currently the Tenured and Distinguished Professor and the Director of Center for Numerical Simulation and Modeling at University of Texas at Arlington, Arlington, Texas, USA. He has worked on high order direct numerical simulation (DNS) and large eddy simulation (LES) for flow transition and turbulence for over 30 years since 1989. As PI, he has been awarded by NASA, US Air Force and US Navy with 50 federal research grants of over 5.7106 US dollars in the United States.. He has published 11 professional books, 120 journal papers and 145 conference papers. He is the founder and major contributor of the third generation of vortex identification methods including the Omega, Liutex/Rortex, Liutex-Omega, Modified Liutex-Omega, Liutex Core Line methods, RS vorticity decomposition and R-NR velocity gradient decomposition

Affiliations and Expertise

Center for Numerical Simulation and Modeling, University of Texas at Arlington, Arlington, Texas, USA

Hongyi Xu

Dr. Hongyi Xu got his BS(1985) and MS(1988) from Shanghai University of Technology, Shanghai, China and received Ph.D(1998) from Queens University at Kingston, Canada. He is currently a Professor at Fudan University, Shanghai, China. He has conducted professional research in the fixed-wing and rotary-wing aerodynamics and thermal turbulence in high-temperature turbine of aero-engine. He had fifteen-years of working experience as a senior research officer in the Institute for Aerospace Research, National Research Council(IAR/NRC) of Canada. He was the rotary-wing group leader in the aerodynamic lab of IAR/NRC and was appointed by Department of National Defense as a chief-expert representative of Canada participating The Technology Collaboration Program (TTCP) activities involving United State, British, Canada, Australia and New Zeland. He was leading and participating a number of R&D research programs from both north america major aero-manufacturers and governmwent organizations, such as Canadian Bombardier Aircraft Company, Pratt-Whitney Aero-engine company,U.S. Bell Helicopter Incorporation and Defense Research Development Canada and Defense Research Establishment etc. He joined the Department of Aeronautics and Astronautics, Fudan University as a senior professor in 2013. He has published many research papers in both internationally prestigious journals and conferences. He was invited by a number of well-known research organizations and universities to deliever speechs, such as the Oxford University in U.K., Siegen University in German, Japan Aerospace Exploration Agency(JAXA) and Taiwan Kaosiong University. He is currently leading a number of research programs from Chinese Natural Science Foundation and Shanghai Aeroengine Corporation. Academically, he is a well-known expert in direct numerical simulation of turbulence and establishs the wall-turbulence big databank at Fudan University. Based on these data, he pushs the front of the current Turbulent Boundary Layer theory and develops the complete law-of-the-wall formulations for wall-bounded turbulence. Moreover, he applys the modern neuro-network techniques to explore the innovative turbulence closure modelling.

Affiliations and Expertise

Professor, Fudan University, China

Xiaoshu Cai

Professor Xiaoshu Cai works at Shanghai University of Science and Technology in China.

Affiliations and Expertise

Professor, Shanghai University of Science and Technology, China

Yisheng Gao

Yisheng Gao works in the Department of Mathematics at University of Texas at Arlington, USA.

Affiliations and Expertise

Department of Mathematics, University of Texas at Arlington, USA

Ratings and Reviews