Linear Models

1st Edition

A Mean Model Approach

Print ISBN: 9780123992468
eBook ISBN: 9780080510293
Imprint: Academic Press
Published Date: 9th October 1996
Page Count: 228
120.95 + applicable tax
74.00 + applicable tax
91.95 + applicable tax
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Linear models, normally presented in a highly theoretical and mathematical style, are brought down to earth in this comprehensive textbook. Linear Models examines the subject from a mean model perspective, defining simple and easy-to-learn rules for building mean models, regression models, mean vectors, covariance matrices and sums of squares matrices for balanced and unbalanced data sets. The author includes both applied and theoretical discussions of the multivariate normal distribution, quadratic forms, maximum likelihood estimation, less than full rank models, and general mixed models. The mean model is used to bring all of these topics together in a coherent presentation of linear model theory.

Key Features

@introbul:Key Features @bul:* Provides a versatile format for investigating linear model theory, using the mean model

  • Uses examples that are familiar to the student:
    @subbul:* design of experiments, analysis of variance, regression, and normal distribution theory
  • Includes a review of relevant linear algebra concepts
  • Contains fully worked examples which follow the theorem/proof presentation


Graduate students in statistics

Table of Contents

Linear Algebra and Related Introductory Topics: Elementary Matrix Concepts. Kronecker Products. Random Vectors. Multivariate Normal Distribution: Multivariate Normal Distribution Function. Conditional Distributionsof Multivariate Normal Vectors. Distributions of Certain Quadratic Forms. Distributions of Quadratic Forms: Quadratic Forms of Normal Random Vectors. Independence. t and F Distributions. Bhats Lemma. Complete, Balanced Factorial Experiments: Models That Admit Restrictions (Finite Models). Models That Do Not Admit Restrictions (Infinite Models). Sum of Squares and Covariance Matrix Algorithms. Expected Mean Squares. Algorithm Applications. Least Squares Regression: Ordinary Least SquaresEstimation. Best Linear Unbiased Estimators. ANOVA Table for the Ordinary Least Squares Regression Function. Weighted Least Squares Regression. Lack of Fit Test. Partitioning the Sum of Squares Regression. The Model Y = X( + E in Complete, BalancedFactorials. Maximum Likelihood Estimation and Related Topics: Maximum Likelihood Estimators (MLEs) of ( and ( + 2. Invariance Property, Sufficiency and Completeness. ANOVA Methods for Finding Maximum Likelihood Estimators. The Likelihood Ratio Test for H( = h. Confidence Bands on Linear Combinations of (. Unbalanced Designs and Missing Data: Replication Matrices. Pattern Matrices and Missing Data. Using Replication and Pattern Matrices Together. Balanced Incomplete Block Designs: General Balanced Incomplete Block Design. Analysis of the General Case. Matrix Derivations of Kempthornes Inter- and Intra-Block Treatment Difference Estimators. Less Than Full Rank Models: Model Assumptions and Examples. The Mean Model Solution. Mean Model Analysis When cov(E) = ( + 2I - n. Estimable Functions. M


No. of pages:
© Academic Press 1996
Academic Press
eBook ISBN:
Hardcover ISBN:
Paperback ISBN:


@qu:"At the theorectical level, this book deals with the general linear model: the usual results on the distribution of linear functions of the observations and of quadratic forms are all derived in the general case." @source:--MATHEMATICAL REVIEWS @qu:"This text presents the linear model (i.e., the analysis of variance and regression theory) from a sophisticated matrix algebra formulation. The book would be most suitable for graduate students of statistics who are already familiar with both linear algebra and the linear model." @source:--JOURNAL OF MATHEMATICL PSYCHOLOGY