Linear Algebra
1st Edition
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Description
Linear Algebra is intended to be used as a text for a one-semester course in linear algebra at the undergraduate level. The treatment of the subject will be both useful to students of mathematics and those interested primarily in applications of the theory. The major prerequisite for mastering the material is the readiness of the student to reason abstractly. Specifically, this calls for an understanding of the fact that axioms are assumptions and that theorems are logical consequences of one or more axioms. Familiarity with calculus and linear differential equations is required for understanding some of the examples and exercises.
This book sets itself apart from other similar textbooks through its dedication to the principle that, whenever possible, definitions and theorems should be stated in a form which is independent of the notion of the dimension of a vector space. A second feature of this book which is worthy of mention is the early introduction of inner product spaces and the associated metric concepts. Students soon feel at ease with this class of spaces because they share so many properties with physical space when equipped with a rectangular coordinate system. Finally, the book includes a chapter concerned with several applications to other fields of the theory that have been developed.
Table of Contents
Preface
Symbols
Chapter 1 Vector Spaces
1 Vectors
2 Definitions of a Vector Space
3 Subspaces and Their Algebra
4 Vector Spaces over Arbitrary Fields
Chapter 2 Further Properties of Vector Spaces
1 Bases and Dimension
2 Isomorphism
3 Calculation Methods
4 Change of Basis
5 Geometric Aspects of Vector Spaces
Chapter 3 Inner-Product Spaces
1 Euclidean Spaces
2 Orthonormal Bases
3 Distances and Norms
4 Orthogonal Complements and Orthogonal Projections
5 Unitary Spaces
Chapter 4 Linear Transformations
1 Definition of a Linear Transformation
2 Range, Null Space, Rank, and Nullity
3 The Vector Spaces L(V,W) and L(V,V)
4 Linear Functionals and Dual Spaces
5 Annihilators
6 Adjoints
7 Unitary and Orthogonal Transformations
Chapter 5 Matrices
1 Rank
2 Similar Linear Transformations and Matrices
3 Elementary Matrices
4 Triangular Matrices
5 Determinants
Chapter 6 Algebraic Properties of Linear Transformations
1 Polynomial Rings
2 Minimal Polynomials
3 Characteristic Values and Vectors
4 Diagonalization of Self-Adjoint Transformations
5 Characteristic Polynomials
6 Triangulable Linear Transformations
Chapter 7 Bilinear Forms and Quadratic Forms
1 Bilinear Forms
2 Quadratic Forms
3 External Properties of Characteristic Values of a Symmetric Matrix
Chapter 8 Decomposition Theorems for Normal Transformations
1 Direct Sums and Projections
2 A Decomposition Theorem
3 Normal Transformations
4 The Jordan Normal Form
Chapter 9 Several Applications of Linear Algebra
1 Linear Differential Equations
2 Economics: Interactions among Industries and Consumers
3 Chemistry: Analysis of Multicomponent Mixtures
4 Physics: Coupled Oscillations and Normal Modes
5 Chemical Physics : The Harmonic Oscillator
Appendix: Notions of Set Theory
Index
Details
- No. of pages:
- 336
- Language:
- English
- Copyright:
- © Academic Press 1968
- Published:
- 1st January 1968
- Imprint:
- Academic Press
- eBook ISBN:
- 9781483265230
About the Authors
R. R. Stoll
E. T. Wong
Ratings and Reviews
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.