Lectures on the Curry-Howard Isomorphism, Volume 149
1st Edition
Secure Checkout
Personal information is secured with SSL technology.Free Shipping
Free global shippingNo minimum order.
Table of Contents
Preface
Acknowledgements
- Typefree lambda-calculus
- Intuitionistic logic
- Simply typed lambdacalculus
- The Curry-Howard isomorphism
- Proofs as combinators
- Classical logic and control operators
- Sequent calculus
- First-order logic
- First-order arithmetic
- Gödel's system T
- Second-order logic and polymorphism
- Second-order arithmetic
- Dependent types
- Pure type systems and the lambda-cube
A Mathematical Background
B Solutions and hints to selected exercises
Bibliography
Index
Description
The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance, minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to dependent types, second-order logic corresponds to polymorphic types, sequent calculus is related to explicit substitution, etc.
The isomorphism has many aspects, even at the syntactic level: formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc.
But there is more to the isomorphism than this. For instance, it is an old idea---due to Brouwer, Kolmogorov, and Heyting---that a constructive proof of an implication is a procedure that transforms proofs of the antecedent into proofs of the succedent; the Curry-Howard isomorphism gives syntactic representations of such procedures. The Curry-Howard isomorphism also provides theoretical foundations for many modern proof-assistant systems (e.g. Coq).
This book give an introduction to parts of proof theory and related aspects of type theory relevant for the Curry-Howard isomorphism. It can serve as an introduction to any or both of typed lambda-calculus and intuitionistic logic.
Key features
- The Curry-Howard Isomorphism treated as common theme
- Reader-friendly introduction to two complementary subjects: Lambda-calculus and constructive logics
- Thorough study of the connection between calculi and logics
- Elaborate study of classical logics and control operators
- Account of dialogue games for classical and intuitionistic logic
- Theoretical foundations of computer-assisted reasoning
Key Features
· The Curry-Howard Isomorphism treated as the common theme.
· Reader-friendly introduction to two complementary subjects: lambda-calculus and constructive logics
· Thorough study of the connection between calculi and logics.
· Elaborate study of classical logics and control operators.
· Account of dialogue games for classical and intuitionistic logic.
· Theoretical foundations of computer-assisted reasoning
Readership
Graduate students, lecturers and researchers in logic and theoretical computer science. Also for graduate students, lecturers and researchers in philosophy and mathematics.
Details
- No. of pages:
- 456
- Language:
- English
- Copyright:
- © Elsevier Science 2006
- Published:
- 4th July 2006
- Imprint:
- Elsevier Science
- Hardcover ISBN:
- 9780444520777
- eBook ISBN:
- 9780080478920
Ratings and Reviews
About the Authors
Morten Heine Sørensen
Affiliations and Expertise
University of Copenhagen, Denmark
Pawel Urzyczyn
Affiliations and Expertise
Warsaw University, Poland
Request Quote
Tax Exemption
Elsevier.com visitor survey
We are always looking for ways to improve customer experience on Elsevier.com.
We would like to ask you for a moment of your time to fill in a short questionnaire, at the end of your visit.
If you decide to participate, a new browser tab will open so you can complete the survey after you have completed your visit to this website.
Thanks in advance for your time.