COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Process Systems Engineering for Pharmaceutical Manufacturing - 1st Edition - ISBN: 9780444639639, 9780444639660

Process Systems Engineering for Pharmaceutical Manufacturing, Volume 41

1st Edition

Editors: Ravendra Singh Zhihong Yuan
eBook ISBN: 9780444639660
Hardcover ISBN: 9780444639639
Imprint: Elsevier
Published Date: 15th March 2018
Page Count: 698
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

1. New Product Discovery and Development for Pharmaceutical Industry
Catherine Azzaro-Pantel
2. The development of a pharmaceutical oral solid dosage forms
Rahamatullah Shaikh, Denise Croker, Donal O'Brien and Gavin Walker
3. Innovative Process Development and Production Concepts for Small-molecule API Manufacturing
John Woodley
4. Plantwide Technoeconomic Analysis and Separation Solvent Selection for Continuous Pharmaceutical Manufacturing: Ibuprofen, Artemisinin and Diphenhydramine
Dimitrios Gerogiorgis, Samir Diab and Hikaru Jolliffe
5. Flowsheet Modeling of a Continuous Direct Compression Process
Seongkyu Yoon
6. Plant-wide Dynamic Model for the Integrated Continuous Pharmaceutical Process: Design of the Recycle
Brahim Benyahia
7. Advanced Multi-phase Hybrid Model Development of Fluidized Bed Wet Granulation Processes
Rohit Ramachandran, Ashutosh Tamrakar and Dheeraj R. Devarampally
8. Global sensitivity, feasibility and flexibility analysis of continuous pharmaceutical manufacturing processes
Marianthi Ierapetritou and Zilong Wang
9. Crystallization process monitoring and control using process analytical technology
Levente Simon, Elena Simone and Kaoutar Abbou Oucherif
10. BioProcess Performance Monitoring using Multi-way Interval Partial Least Square
Julian Morris, Jie Zhang and Shallon Stubbs
11. Process Dynamics, and control of API manufacturing and purification processe
Maitraye Sen, Ravendra Singh and Rohit Ramachandran
12. PAT for pharmaceutical manufacturing process involving solid dosages forms
Andrés David Román-Ospino, Carlos Alberto Ortega-Zuniga, Vanessa Cardenas and Ravendra Singh
13. Model-based control system design and evaluation for continuous tablet manufacturing processes (via direct compaction, via roller compaction, via wet granulation)
Ravendra Singh
14. Fast Stochastic Model Predictive Control of End-to-end Continuous Pharmaceutical Manufacturing
Richard D. Braatz, Ali Mesbah, Joel A. Paulson, Stefan Streif and Rolf Findeisen
15. Advanced Control for the Continuous Dropwise Additive Manufacturing of Pharmaceutical Products
Zoltan Nagy, Gintaras Reklatis and Elcin Icten
16. Control System Implementation and Plant-Wide Control of Continuous Pharmaceutical Manufacturing Pilot Plant (End-To-End Manufacturing Process)
Richard Lakerveld
17. Automation of continuous pharmaceutical manufacturing process
Ravendra Singh
18. Implementation of control system into continuous pharmaceutical manufacturing pilot-plant (powder to tablet)
Ravendra Singh
19. Monitoring and control of a continuous tumble mixer
Carlos Velazquez Figueroa, Leonel Quiñones and Miguel A. Florian Algarin
20. Flexible Continuous Manufacturing -- Based on S88 Batch Standards and Object Oriented Design
Paul Brodbeck
21. Planning Pharmaceutical Clinical Trials under Outcome Uncertainty
Selen Cremaschi and Brianna Christian
22. Integrated production planning and inventory management in a multinational pharmaceutical supply chain
Naresh Susarla and IA Karimi
23. Optimal Production of Biopharmaceutical Manufacturing
Lazaros Papageorgiou and Songsong Liu
24. Perspective on PSE in pharmaceutical process development and innovation-views from academia
Rafiqul Gani, John Woodley and Emmanouil Papadakis


Process Systems Engineering for Pharmaceutical Manufacturing: From Product Design to Enterprise-Wide Decisions, Volume 41, covers the following process systems engineering methods and tools for the modernization of the pharmaceutical industry: computer-aided pharmaceutical product design and pharmaceutical production processes design/synthesis; modeling and simulation of the pharmaceutical processing unit operation, integrated flowsheets and applications for design, analysis, risk assessment, sensitivity analysis, optimization, design space identification and control system design; optimal operation, control and monitoring of pharmaceutical production processes; enterprise-wide optimization and supply chain management for pharmaceutical manufacturing processes.

Currently, pharmaceutical companies are going through a paradigm shift, from traditional manufacturing mode to modernized mode, built on cutting edge technology and computer-aided methods and tools. Such shifts can benefit tremendously from the application of methods and tools of process systems engineering.

Key Features

  • Introduces Process System Engineering (PSE) methods and tools for discovering, developing and deploying greener, safer, cost-effective and efficient pharmaceutical production processes
  • Includes a wide spectrum of case studies where different PSE tools and methods are used to improve various pharmaceutical production processes with distinct final products
  • Examines the future benefits and challenges for applying PSE methods and tools to pharmaceutical manufacturing


Reference for graduates, post graduates and researchers in academia and (pharma) industry. Chemists/ Chemical engineers in pharmaceutical companies. It could be used for novel courses on pharmaceutical systems engineering and by regulators (eg FDA) to familiarize themselves with the current PSE methods and tools


No. of pages:
© Elsevier 2018
15th March 2018
eBook ISBN:
Hardcover ISBN:


“Process Systems Engineering for Pharmaceutical Manufacturing” is a diverse collection of reviews and case studies, most of which were published previously. While this book provides an excellent summary of process modelling and computing with a view to the increased importance of robust simulation tools in pharmaceutical process development and manufacturing, more recent journal publications may provide additional or more in-depth information on the current state of specific technologies or algorithms described in the book. It is also evident that much of the key work in these areas has yet to be done. One topic missing from discussion in the book is the advent of quantum computing and the potential quantum computing presents in solving optimisation problems in process systems engineering. I would look forward to seeing an additional volume added to the series as the technology develops" --Johnson Matthey Technology Review

Ratings and Reviews

About the Editors

Ravendra Singh

Dr. Ravendra Singh is Assistant Research Professor at C-SOPS, Department of Chemical and Biochemical Engineering, Rutgers University, USA, working in Pharmaceutical System Engineering research field. C-SOPS is a unique pharmaceutical center founded by National Science Foundation (NSF) USA with annual budget exceeding 40 million USD. Dr. Singh is also serving as a manager and key researcher of “multi million dollars projects funded by NSF, FDA and pharmaceutical companies. He is well known in pharmaceutical systems engineering field among regulators, researchers and pharmaceutical manufacturing practitioners for his work related to pharmaceutical process monitoring and control, simulation, optimization, QbD, PAT, and novel methods and software tools development. He is highly experienced on pharmaceutical systems engineering as well as practical implementation into the plant.

Dr. Singh’s educational background was also based on Pharmaceutical system engineering field of Chemical and Biochemical Engineering. He obtained his MS from IIT Roorkee India and completed his MS thesis from Process System Engineering center, RWTH Aachen Germany on modelling and control of crystallization process (a key unit operation used for API purification process). He has completed his PhD from CAPEC, Department of Chemical and Biochemical Engineering, Technical University of Denmark. For his PhD thesis which was based on pharmaceutical systems engineering, he received a prestigious EFCE Excellence Award given in Recognition of an Outstanding PhD Thesis, from European Federation of Chemical Engineering. In the area pf pharmaceutical system engineering, he has published more than 43 research papers, written 4 book chapters, and presented at over 75 international conferences.

On the basis of Dr. Singh’s educational and research backgrounds and publication records, he is a right person to be served as an editor and author of this book.

Affiliations and Expertise

NSF Engineering Research Center (ERC) for Structured Organic Particulate Systems (C- SOPS), Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, NJ, USA

Zhihong Yuan

Zhihong Yuan received his M.Sc. from China University of Petroleum (Beijing) in 2008 before moving to Tsinghua University where he obtained his Ph.D in 2011. After working at Carnegie Mellon University as a postdoctoral researcher for almost three years, he moved to Auburn University as a postdoctoral fellow in 2014. In this September, he will be joining Tsinghua University, China as an assistant professor at the Department of Chemical Engineering.

Since 2008, Dr. Yuan has been extensively involved in several research activities in the field of process systems engineering ranging from processing unit/plant-wide

modelling, simulation, and nonlinear analysis to process synthesis/design, optimization, and control along with the extensive applications to energy systems and (petro) chemical processes.

Affiliations and Expertise

Department of Chemical, Engineering, Tsinghua University. Beijing, China