Volume 33 reviews the current understanding of ion channel regulation by signal transduction pathways. Ion channels are no longer viewed simply as the voltage-gated resistors of biophysicists or the ligand-gated receptors of biochemists. They have been transformed during the past 20 years into signaling proteins that regulate every aspect of cell physiology. In addition to the voltage-gated channels, which provide the ionic currents to generate and spread neuronal activity, and the calcium ions to trigger synaptic transmission, hormonal secretion, and muscle contraction, new gene families of ion channel proteins regulate cell migration, cell cycle progression, apoptosis, and gene transcription, as well as electrical excitability. Even the genome of the lowly roundworm Caenorhabditis elegans encodes almost 100 distinct genes for potassium-selective channels alone. Most of these new channel proteins are insensitive to membrane potential, yet in humans, mutations in these genes disrupt development and increase individual susceptibility to debilitating and lethal diseases. How do cells regulate the activity of these channels? How might we restore their normal function? In Ion Channel Regulation, many of the experts who pioneered these discoveries provide detailed summaries of our current understanding of the molecular mechanisms that control ion channel activity.

Key Features

@introbul:Key Features @bul:* Reviews brain functioning at the fundamental, molecular level * Describes key systems that control signaling between and within cells * Explains how channels are used to stimulate growth and changes to activity of the nucleus and genome


Cell biologists, biochemists, neuroscientists, pharmacologists, and biophysicists interested in ion channels. Written specifically to introduce non-electrophysiologists to ion channels as proteins and to introduce electrophysiologists to signal transduction pathways, Ion Channel Regulation represents a unique professional summary of an important and exciting field and will attract and instruct anyone interested in cell signaling through second messengers and phosphoproteins.

Table of Contents

Overview: I.B. Levitan, Modulation of Ion Channels by Protein Phosphorylation. Protein Phosphorylation. S. Rossie, Regulation of Voltage-Sensitive Sodium and Calcium Channels by Phosphorylation. S.L. Swope, S.J. Moss, L.A. Raymond, and R.L. Huganir, Regulation of Ligand Gated Ion Channels by Protein Phosphorylation. D.C. Gadsby and A.C. Nairn, Regulations of CFTR Cl- Ion Channels by Phosphorylation and Dephosphorylation. Second Messengers: M. Biel, X. Zong, and F. Hofmann, Cyclic Nucleotide-Gated Channels. R.E. White, Cyclic GMP and Ion Channel Regulation. Closely Associated Proteins: S.R. Ikeda and K. Dunlap, Voltage-Dependent Modulation of N-Type Calcium Channels: Role of G Proteins Subunits. Novel Pathways. J.-L. Sui, K. Chan, M.-N. Langan, M. Vivaudou, and D.E. Logothetis, G Protein-Gated Potassium Channels. A.C. Dolphin, L Type Calcium Channel Modulation by G Proteins. Novel Pathways: S.G. Rane, Ion Channels as Physiological Effectors for Growth Factor Receptor and Ras/ERK Signaling Pathways. R.S. Lewis, Store-Operated Calcium Channels. Subject Index.


No. of pages:
© 1999
Academic Press
eBook ISBN:
Print ISBN:
Print ISBN:

About the serial-volume-editors

David Armstrong

Affiliations and Expertise

National Institute of Environmental Health Science, Research Triangle Park, North Carolina, U.S.A.

Sandra Rossie

Affiliations and Expertise

Purdue University, West Lafayette, Indiana, U.S.A.