Introduction to Zeolite Molecular Sieves, 3rd Edition presents a collection of the most important results and ideas in the field of molecular sieve chemistry and technology, the most important experimental techniques related to the research activities in molecular sieves, and identifies new areas of molecular sieve chemistry. Chapters start at a reasonably simple entry level, but also covers the present state-of-the-art in the field. Topics covered include structure, synthesis, characterization, ion exchange, adsorption, diffusion, separations, and natural zeolites.

Key Features

* 6 years since the last edtion this book brings together the rapid development within the field of molecular sieve chemistry and applications * Accessible to newcomers to the field, also containing valuable information for experienced researchers * 27 chapters written by renowned scientists in their field, including updates on some 2nd edition chapters


For newcomers to the field of molecular sieve chemistry and technology, also containing valuable information for experienced researchers

Table of Contents

Chapter 1. Zeolite Scene (T. Maesen).
Chapter 2. Zeolite structures (L.B. McCusker).
Chapter 3. Synthesis of zeolites (Jihong Yu).
Chapter 4. Aluminophosphates with new structures (S. Wilson).
Chapter 5. Organic templates and zeolite synthesis (A. Burton, I. Zones).
Chapter 6. Molecular sieve membranes – synthesis, characterization and application (A. Julbe).
Chapter 7. Synthesis of delaminated and pillared materials and clays (W.J. Roth).
Chapter 8. Synthesis of mesoporous molecular sieves (D.Y. Zhao).
Chapter 9. Micro/mesoporous composite molecular sieves (S. Mintova, J. Cejka).
Chapter 10. Organic – inorganic porous hybride systems (G. Ferey).
Chapter 11. Diffraction techniques (R. Morris).
Chapter 12. Solid state NMR spectroscopy in zeolite science (A. Gedeon).
Chapter 13. Infrared and Raman spectroscopy and zeolites (J.A. Lercher, A. Jentys).
Chapter 14. TEM of molecular sieves (O. Terasaki).
Chapter 15. Textural characterization (M. Thommes).
Chapter 16. Ion exchange (A. Dyer).
Chapter 17. Adsorption and microcalorimetry on molecular sieves (P. Llewellyn, G. Maurin).
Chapter 18. Host-guest interactions in zeolites and mesoporous molecular sieves (T. Bein).
Chapter 19. Molecular modeling (R. Catlow).
Chapter 20. Quantum chemistry in zeolite science (P. Nachtigall, J. Sauer).
Chapter 21. Diffusion and separation in molecular sieves (D. Ruthven).
Chapter 22. Acid and base catalysis on zeolites (J. Weitkamp, M. Hunger).
Chapter 23. Catalysis on mesoporous molecular sieves (J. Vartuli).
Chapter 24. Hydrocarbon processing (M. Rigutto).


No. of pages:
© 2007
Elsevier Science
eBook ISBN:
Print ISBN:

About the authors

Jiri Cejka

Affiliations and Expertise

J. Heyrovsky Institute of Physical Chemistry, Prague, Czech Republic

Herman van Bekkum

Affiliations and Expertise

Delft University of Technology, Delft, Netherlands

A. Corma

Affiliations and Expertise

Valencia, Spain

F. Schueth

Affiliations and Expertise

Muelheim, Germany