Introduction to the Mathematics of Quasicrystals - 1st Edition - ISBN: 9780120406029, 9780323159470

Introduction to the Mathematics of Quasicrystals

1st Edition

Editors: Marko V. Jaric
eBook ISBN: 9780323159470
Imprint: Academic Press
Published Date: 28th June 1989
Page Count: 238
Tax/VAT will be calculated at check-out Price includes VAT (GST)
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
30% off
30% off
30% off
30% off
30% off
20% off
20% off
43.99
30.79
30.79
30.79
30.79
30.79
35.19
35.19
72.95
51.06
51.06
51.06
51.06
51.06
58.36
58.36
54.95
38.47
38.47
38.47
38.47
38.47
43.96
43.96
Unavailable
Price includes VAT (GST)
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Description

Introduction to the Mathematics of Quasicrystals provides a pedagogical introduction to mathematical concepts and results necessary for a quantitative description or analysis of quasicrystals. This book is organized into five chapters that cover the three mathematical areas most relevant to quasicrystals, namely, the theory of almost periodic functions, the theory of aperiodic tilings, and group theory. Chapter 1 describes the aspects of the theory of tiling in two- and three-dimensional space that are important for understanding some of the ways in which “classical” mathematical crystallography is being generalized; this process is to include possible models for aperiodic crystals. Chapter 2 examines the non-local nature of assembly “mistakes” that might have significance to the quasicrystals growth. This chapter also describes how closely a physical quasicrystal might be able to approximate a three-dimensional version of tilings. Chapter 3 discusses the theoretical background and concepts of group theory of icosahedral quasicrystals. Chapter 4 presents the local properties of the three-dimensional Penrose tilings and their global construction is described through the projection method. This chapter emphasizes the relationship between quasiperiodic sets of points and quasiperiodic tiling. Chapter 5 explores the analysis of defects in quasicrystals and their kinetics, as well as some properties of the perfect system. This book is of great value to physicists, crystallographers, metallurgists, and beginners in the field of quasicrystals.

Table of Contents


Contributors

Preface

1. A Brief Introduction to Tilings

2. Tilings and Quasicrystals: A Non-Local Growth Problem?

3. Group Theory of Icosohedral Quasicrystals

4. Some Local Properties of the Three-Dimensional Penrose Tilings

5. Defects in Quasicrystals

Index


Details

No. of pages:
238
Language:
English
Copyright:
© Academic Press 1989
Published:
Imprint:
Academic Press
eBook ISBN:
9780323159470

About the Editor

Marko V. Jaric