COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Introduction to the Mathematics of Quasicrystals - 1st Edition - ISBN: 9780120406029, 9780323159470

Introduction to the Mathematics of Quasicrystals

1st Edition

Editor: Marko V. Jaric
eBook ISBN: 9780323159470
Imprint: Academic Press
Published Date: 28th June 1989
Page Count: 238
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Introduction to the Mathematics of Quasicrystals provides a pedagogical introduction to mathematical concepts and results necessary for a quantitative description or analysis of quasicrystals. This book is organized into five chapters that cover the three mathematical areas most relevant to quasicrystals, namely, the theory of almost periodic functions, the theory of aperiodic tilings, and group theory. Chapter 1 describes the aspects of the theory of tiling in two- and three-dimensional space that are important for understanding some of the ways in which “classical” mathematical crystallography is being generalized; this process is to include possible models for aperiodic crystals. Chapter 2 examines the non-local nature of assembly “mistakes” that might have significance to the quasicrystals growth. This chapter also describes how closely a physical quasicrystal might be able to approximate a three-dimensional version of tilings. Chapter 3 discusses the theoretical background and concepts of group theory of icosahedral quasicrystals. Chapter 4 presents the local properties of the three-dimensional Penrose tilings and their global construction is described through the projection method. This chapter emphasizes the relationship between quasiperiodic sets of points and quasiperiodic tiling. Chapter 5 explores the analysis of defects in quasicrystals and their kinetics, as well as some properties of the perfect system. This book is of great value to physicists, crystallographers, metallurgists, and beginners in the field of quasicrystals.

Table of Contents



1. A Brief Introduction to Tilings

2. Tilings and Quasicrystals: A Non-Local Growth Problem?

3. Group Theory of Icosohedral Quasicrystals

4. Some Local Properties of the Three-Dimensional Penrose Tilings

5. Defects in Quasicrystals



No. of pages:
© Academic Press 1989
28th June 1989
Academic Press
eBook ISBN:

About the Editor

Marko V. Jaric

Ratings and Reviews