Introduction to Groundwater Modeling

Introduction to Groundwater Modeling

Finite Difference and Finite Element Methods

1st Edition - June 23, 1995

Write a review

  • Authors: Herbert Wang, Mary Anderson
  • eBook ISBN: 9780080571942

Purchase options

Purchase options
DRM-free (Mobi, PDF, EPub)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

The dramatic advances in the efficiency of digital computers during the past decade have provided hydrologists with a powerful tool for numerical modeling of groundwater systems. Introduction to Groundwater Modeling presents a broad, comprehensive overview of the fundamental concepts and applications of computerized groundwater modeling. The book covers both finite difference and finite element methods and includes practical sample programs that demonstrate theoretical points described in the text. Each chapter is followed by problems, notes, and references to additional information. This volume will be indispensable to students in introductory groundwater modeling courses as well as to groundwater professionals wishing to gain a complete introduction to this vital subject.

Key Features

  • Systematic exposition of the basic ideas and results of Hilbert space theory and functional analysis
  • Great variety of applications that are not available in comparable books
  • Different approach to the Lebesgue integral, which makes the theory easier, more intuitive, and more accessible to undergraduate students

Readership

Graduate students in groundwater hydrology courses

Table of Contents

  • Introduction: Models. Physics of Groundwater Flow. Laplaces Equation. Regional Groundwater Flow System. Finite Differences: Steady State Flow (Laplaces Equation): Differences for Derivatives. Iterative Methods. Gauss–Seidel Computer Program. Boundary Conditions. Finite Differences: Steady State Flow (Poissons Equation): Poissons Equation. Island Recharge. Finite Difference Models. Unconfined Aquifer with Dupuit Assumptions. Validity of a Numerical Solution. Finite Differences: Transient Flow: Transient Flow Equation. Explicit Finite Difference Approximation. Implicit Finite Difference Approximation. Unconfined Aquifer with Dupuit Assumptions. Other Solution Methods. Matrix Notation. Tridiagonal Matrices. Alternating Direction Implicit (ADI) Method. Prickett–Lonnquist and Trescott–Pinder–Larson Models. Calibration and Verification. Finite Elements: Steady-State Flow: Galerkins Method. Triangular Elements. Assembly of ConductanceMatrix. Boundary Conditions. Finite Element Computer Program. Region-Near-a-Well Example. Seepage through a Dam. Poissons Equation. Finite Elements: Transient Flow: Galerkins Method. Rectangular Element. Assembly of Matrix Differential Equation. Solving the Matrix Differential Equation. Computer Program for Reservoir Problem. Advective–Dispersive Transport: Dispersion. Solute Transport Equation. Finite Element Example: Solute Dispersion in Uniform Flow Field. Concluding Remarks. Appendixes: Anisotropy and Tensors. Variational Method. Isoparametric Quadrilateral Elements. Analogies. Glossary of Symbols. References. Index.

Product details

  • No. of pages: 256
  • Language: English
  • Copyright: © Academic Press 1995
  • Published: June 23, 1995
  • Imprint: Academic Press
  • eBook ISBN: 9780080571942

About the Authors

Herbert Wang

Affiliations and Expertise

University of Wisconsin, Madison

Mary Anderson

Affiliations and Expertise

University of Wisconsin-Madison, USA

Ratings and Reviews

Write a review

There are currently no reviews for "Introduction to Groundwater Modeling"