Introduction to Gas Lasers: Population Inversion Mechanisms

Introduction to Gas Lasers: Population Inversion Mechanisms

With Emphasis on Selective Excitation Processes

1st Edition - January 1, 1974

Write a review

  • Author: Colin S. Willett
  • eBook ISBN: 9781483158792

Purchase options

Purchase options
DRM-free (PDF)
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

Introduction to Gas Lasers: Population Inversion Mechanisms focuses on important processes in gas discharge lasers and basic atomic collision processes that operate in a gas laser. Organized into six chapters, this book first discusses the historical development and basic principles of gas lasers. Subsequent chapters describe the selective excitation processes in gas discharges and the specific neutral, ionized and molecular laser systems. This book will be a valuable reference on the behavior of gas-discharge lasers to anyone already in the field.

Table of Contents


  • Preface

    Acknowledgments

    Notes Regarding Sections, Equations, References, and Notation

    Chapter 1. Historical Development and Basic Principles of Gas Lasers

    1.1. Introduction

    1.2. Chronology of Major Advances and Knowledge Gained of Important Basic Selective Excitation Processes

    1.3. Fundamental Processes

    1.3.1. Mean Free Paths and Collision Cross-Sections

    1.3.2. Velocity and Electron-Energy Distributions

    1.3.3. Types of Collisions (First and Second Kind)

    1.4. The Interaction of Radiation with Matter

    1.5. Oscillation Conditions

    1.5.1. Dependence of Gain on Wavelength

    References

    Chapter 2. Selective Excitation Processes in Gas Discharges

    2.1. Theoretical Considerations

    2.1.1. Transitional Probabilities

    2.1.2. Selective Excitation Mechanisms

    2.2. Resonant Excitation-Energy Transfer

    2.2.1. Excitation Transfer (Atom-Atom)

    2.2.2. Vibrational Energy Transfer (Molecule-Molecule)

    2.3. Charge Transfer

    2.4. Penning Ionization

    2.5. Dissociative Excitation Transfer

    2.6. Electron Impact

    2.7. Charge Neutralization

    2.7.1. Dissociative Recombination

    2.7.2. Mutual Neutralization

    2.8. Line Absorption and Molecular Photodissociation

    2.9. Radiative Cascade-Pumping

    References

    Chapter 3. Gas Discharge Processes

    3.1. Introduction

    3.2. The Glow Discharge

    3.2.1. The Negative Glow

    3.2.2. The Positive Column

    3.3. RF-Discharges

    3.3.1. General Considerations

    3.3.2. Properties Determined by the Pressure and Frequency of the Field

    3.3.3. Limits of the Diffusion Theory

    3.3.4. Average Electron Energy in the RF-Discharge

    3.3.5. Translation Discharges

    3.4. The Hollow-Cathode Discharge (HCD)

    3.4.1. General Considerations

    3.4.2. Electron Energy Distribution in the HCD

    3.4.3. Excitation Theories

    3.4.4. Sputtering Action

    3.4.5. Use as a Spectroscopic Source

    3.4.6. Excited-States Population in the HCD

    3.4.7. Electrical Properties of the HCD

    3.5. Pulsed Discharges

    3.5.1. Excitation Processes at Breakdown

    3.5.2. Excitation Processes in the Afterglow

    References

    Chapter 4. Specific Neutral Laser Systems

    Introduction

    4.1. Resonant Excitation-Energy Transfer (Atom-Atom) Lasers

    4.1.1. Helium-Neon

    4.1.2. 3.067-µm Chlorine

    4.2. Dissociative Excitation-Transfer Lasers

    4.2.1. Neon-Oxygen

    4.2.2. Argon-Oxygen

    4.2.3. Helium-Fluorine

    4.3. Electron-Impact-Excited Lasers

    4.3.1. CW, Noble-Gas

    4.3.2. Transient Noble-Gas and Metal-Vapor

    4.3.3. Dissociative, Molecular Metal-Vapor Type

    4.4. Miscellaneous Lasers

    4.4.1. Charge Neutralization Lasers; Sodium-Hydrogen, Potassium-Hydrogen, Pure Oxygen, and Neon-Helium and Argon-Helium

    4.4.2. Line-Absorption and Molecular-Photodissociation Lasers; Cesium, Neon, and 1.315-µm Iodine

    4.4.3. Radiative Cascade-Pumped Lasers; Helium-Neon, and Neon

    References

    Chapter 5. Specific Ionized Laser Systems

    Introduction

    5.1. Resonant Excitation-Energy Transfer Lasers

    5.1.1. Helium-Krypton

    5.1.2. Neon-Xenon

    5.2. Charge-Transfer Lasers

    5.2.1. Helium-Mercury

    5.2.2. Helium-Cadmium

    5.2.3. Helium-Zinc and Helium-Neon-Zinc

    5.2.4. Helium-Iodine

    5.2.5. Helium-Selenium

    5.2.6. Helium- or Neon-Tellurium

    5.3. Penning-Reaction Lasers

    5.3.1. Helium-Cadmium

    5.3.2. Helium-Zinc

    5.3.3. Helium-Magnesium

    5.4. Electron-Impact-Excited Lasers

    5.4.1. Noble-Gas (Argon) Lasers

    5.4.2. Pulsed Oscillation Behavior

    5.4.3. CW-Oscillation Behavior

    5.4.4. Spectroscopy of Ion Lasers

    References

    Chapter 6. Specific Molecular Laser Systems

    Introduction

    6.1. Resonant Excitation-Energy Transfer (Molecule-Molecule) Lasers

    6.1.1. Nitrogen-Carbon Dioxide

    6.1.2. "Pure" Carbon Dioxide

    6.1.3. Nitrous Oxide-Nitrogen

    6.2. Electron-Impact-Excited Lasers

    6.2.1. Hydrogen, Deuterated-Hydrogen, and Deuterium (near-Infrared and Vacuum-UV)

    6.2.2. Carbon Monoxide (Infrared, Visible, and Vacuum-UV)

    6.2.3. Nitrogen (UV and Near-Infrared)

    6.2.4. Noble Gas

    6.2.5. Far-Infrared H2O

    6.3. Line Absorption Lasers

    6.3.1. 10.6-µm CO2, HBr-Laser Pumped

    6.3.2. 81.48-µm NH3, N2O-Laser Pumped (Far-Infrared and Submillimeter)

    6.3.3. Iodine Vapor, Frequency-Doubled, YAG-Laser Pumped (Visible and near-Infrared)

    6.4. Radiative Cascade Lasers

    6.4.1. Hydrogen Cyanide, Deuterium Cyanide (Submillimeter)

    6.4.2. Far-Infrared SO2

    References

    Appendix

    Electron Temperatures in Mixtures of the Noble Gases for Various Values of pD: Figs. A.1 to A.9 (See Fig. 3.7 for He-Ne Mixture)

    Partial Energy-Level Diagrams Showing Laser Transitions: Figs. A.10 to A.25

    Laser Transitions in Atomic Species: Tables 1 to 46

    References

    Laser Transitions in Molecular Species: Tables 47 to 85

    References

    Index

    Other Titles in the Series

Product details

  • No. of pages: 544
  • Language: English
  • Copyright: © Pergamon 1974
  • Published: January 1, 1974
  • Imprint: Pergamon
  • eBook ISBN: 9781483158792

About the Author

Colin S. Willett

About the Editor

D. Ter Haar

Ratings and Reviews

Write a review

There are currently no reviews for "Introduction to Gas Lasers: Population Inversion Mechanisms"