Description

Based on the author's best-selling text, Aircraft Structures for Engineering Students, this brief book covers the basics of structural analysis as applied to aircraft structures Coverage of elasticity, energy methods and virtual work set the stage for discussions of airworthiness/airframe loads and stress analysis of aircraft components Numerous worked examples, illustrations, and sample problems show how to apply the concepts to realistic situations. Self-contained, this value-priced book is an excellent resource for anyone learning the subject.

Key Features

  • Based on the author's best-selling text Aircraft Structures for Engineering Students, this introduction covers core concepts in about 200 fewer pages than the original by removing some optional topics like structural vibrations and aeroelasticity
  • Systematic step-by-step procedures in the worked examples
  • Self-contained, with complete derivations for key equations

Readership

Undergraduate and postgraduate students of aerospace and aeronautical engineering. Also suitable for professional development and training courses

Table of Contents

Preface

Part A: Fundamentals of structural analysis

Section A1. Elasticity

Chapter 1. Basic elasticity

1.1 Stress

1.2 Notation for forces and stresses

1.3 Equations of equilibrium

1.4 Plane stress

1.5 Boundary conditions

1.6 Determination of stresses on inclined planes

1.7 Principal stresses

1.8 Mohr’s circle of stress

1.9 Strain

1.10 Compatibility equations

1.11 Plane strain

1.12 Determination of strains on inclined planes

1.13 Principal strains

1.14 Mohr’s circle of strain

1.15 Stress–strain relationships

1.16 Experimental measurement of surface strains

References

Additional Reading

Problems

Chapter 2. Two-dimensional problems in elasticity

2.1 Two-dimensional problems

2.2 Stress functions

2.3 Inverse and semi-inverse methods

2.4 St. Venant’s principle

2.5 Displacements

2.6 Bending of an end-loaded cantilever

Reference

Problems

Chapter 3. Torsion of solid sections

3.1 Prandtl stress function solution

3.2 St. Venant warping function solution

3.3 The membrane analogy

3.4 Torsion of a narrow rectangular strip

References

Problems

Section A2. Virtual work, energy, and matrix methods

Chapter 4. Virtual work and energy methods

4.1 Work

4.2 Principle of virtual work

4.3 Applications of the principle of virtual work

Reference

Problems

Chapter 5. Energy methods

5.1 Strain energy and complementary energy

5.2 Principle of the stationary value of the total complementary energy

5.3 Application to deflection problems

5.4 Application to the solution of statically indeterminate systems

5.5 Unit load method

5.6 Flexibility method

5.7 Tot

Details

No. of pages:
728
Language:
English
Copyright:
© 2014
Published:
Imprint:
Butterworth-Heinemann
Print ISBN:
9780080982014
Electronic ISBN:
9780080982038