This book teaches the analyst why it is advantageous to obtain vibrational data under different physical phases. Molecular vibrations are affected by change in physical phase, and knowledge of how certain molecular vibrations are affected by change in the chemical environment improves the analyst's ability to solve complex chemical problems. This book is invaluable for students and scientists engaged in analytical and organic chemistry, since application of IR and Raman spectroscopy is essential in identifying and verifying molecular structure. This reference provides analysts with information that enables them to acquire the maximum amount of information when sampling molecular vibrations via IR and Raman spectroscopy.

Key Features

@introbul:Key Features @bul:* Explains why it is advantageous to obtain vibrational data under different physical phases * Compiles many vibrational studies into a single compendium * Lists group frequencies in different physical phases * Reveals that some group frequencies are more affected than others by changes in the physical phase * Demonstrates that in-phase and out-of-phase vibrations of the same functional group are not equally affected * Describes how solute-solvent complexes differ with changes in the solvent system * Shows that the amount of Fermi resonance between a fundamental vibration and a combination or overtone is altered with change of physical phase * Written by an internationally recognized expert


Spectroscopists, analytical and organic chemists, chemical physicists, both in academia and especially industry.

Table of Contents

Volume 1: Theory of Vibrational Spectroscopy Experimental Alkyl Carbon-Hydrogen Vibrations Alkenes and Other Compounds Containing C=C Double Bonds Alkynes and Compounds Containing C=C Groups Carboxamides, Ureas, Thioureas, Imidazolidinones, Caffeine, Isocaffeine, Uracils, Imides, Hydantoins, and s-Triazine (1H, 3H, 5H)- Triones Aldehydes Ketones Carboxylic Acid Esters Organic Carbonates, Thiol Carbonates, Chloroformates, Thiol Chloroformates, Acetyl Chloride, Benzoyl Chloride, Carbamates, and an Overview of Solute-Solvent Effects Upon Carbonyl Stretching Frequencies Volume 2: Epoxides and Ethers Nitriles, Isonitriles, and Dialkyl Cyanamides Azines, Isocyanates, Isothiocyanates, and Carbodiimides Thiols, Sulfides and Disulfides, Alkanethiols, and Alkanedithiols (S--H stretching) Sulfoxides, Sulfones, Sulfates, Monothiosulfates, Sulfonyl Halides, Sulfites, Sulfonamides, Sulfonates, and N-Sulfinyl Anilines Halogenated Hydrocarbons Nitroalkanes, Nitrobenzenes, Alkyl Nitrates, Alkyl Nitrites, and Nitrosamines Phosphorus Compounds Benzene and Its Derivatives The Nyquist Vibrational Group Frequency Rule Infrared Raman and Nuclear Magnetic Resonance (NMR) Spectra-Structure Correlations for Organic Compounds


No. of pages:
© 2001
Academic Press
Print ISBN:
Electronic ISBN:


@tease:Awarded for Excellence in Professional & Scholarly Publishing, by the Association of American Publishers, 2001, Chemistry @qu:"Nyquist's two-volume set on the interpretation of IR, Raman, and NMR spectra includes emphasis on how the spectra are affected by the physical environment (solid, liquid, vapor, solution). ...packed with tables and graphs of vibrational frequencies and spectra. Highly recommended as a reference work and a handbook of data. Graduate students through professionals." @source:--CHOICE, October 2001