Hydrogen Electrochemical Production - 1st Edition - ISBN: 9780128112502, 9780128112519

Hydrogen Electrochemical Production

1st Edition

Authors: Christophe Coutanceau Stève Baranton Thomas Audichon
Series Editors: Bruno G. Pollet
eBook ISBN: 9780128112519
Paperback ISBN: 9780128112502
Imprint: Academic Press
Published Date: 11th September 2017
Page Count: 110
Tax/VAT will be calculated at check-out Price includes VAT (GST)
15% off
15% off
15% off
15% off
64.50
54.83
47.95
40.76
54.95
46.71
59.95
50.96
Unavailable
Price includes VAT (GST)
× DRM-Free

Easy - Download and start reading immediately. There’s no activation process to access eBooks; all eBooks are fully searchable, and enabled for copying, pasting, and printing.

Flexible - Read on multiple operating systems and devices. Easily read eBooks on smart phones, computers, or any eBook readers, including Kindle.

Open - Buy once, receive and download all available eBook formats, including PDF, EPUB, and Mobi (for Kindle).

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

  1. Introduction
    2. Hydrogen production catalytic reforming
    2.1 Production from natural gas
    2.2 Production from biomass
    2.3 Advantages and drawbacks
    3. Hydrogen production from water electrolysis
    3.1 Thermodynamic point of view
    3.2 Alkaline water electrolysis
    3.3 Acidic water electrolysis
    3.4 HT electrolysis cells
    4.  Hydrogen production from biomass electroreforming
    4.1 Hydrogen production from alcohol
    4.2 Hydrogen reforming from polyols and saccharides
    5. Conclusion

Description

Hydrogen Electrochemical Production presents different avenues of hydrogen production for energy applications, including current developments and future perspectives, using an interdisciplinary approach. Part of the Hydrogen Energy and Fuel Cell Primers series, the volume synthesizes information from many sources, making it a useful reference for industry professionals, researchers and graduate students. The book examines various methods, explaining their advantages and limitations. The water electrolysis reaction and systems are explored from different points of view, including an assessment of state-of-the-art technologies. Alternatives to water for feeding the electrolysis cell anode and for electrochemical hydrogen production (such as alcohol or other compounds from biomass) are discussed.

Key Features

  • Explores current technology developments and future perspectives of hydrogen production for energy applications
  • Examines the state-of-the art technology in electrolysis reaction and systems and discusses the advantages and limitations of various methods
  • Covers alternatives to water for feeding electrolysis cell anode, including alcohol and other compounds from biomass

Readership

Industry professionals, researchers and graduate students, especially those starting in a new topic of research or coming into the field


Details

No. of pages:
110
Language:
English
Copyright:
© Academic Press 2017
Published:
Imprint:
Academic Press
eBook ISBN:
9780128112519
Paperback ISBN:
9780128112502

About the Authors

Christophe Coutanceau Author

Christophe Coutanceau obtained his Ph.D. degree in electrochemistry in 1994 at the University of Poitiers, France. He then worked as Assistant Professor at the Laboratory of Catalysis in Organic Chemistry (LACCO) in that same institution, before being promoted in 2008. At present, he is Professor in Physical Chemistry at IC2MP and Director of the Catalysis and Unconventional Media group of the Institute of Chemistry of Poitiers. He is also chair of the Low Temperature and Fuel and Electrolysis Cells axis of the Hydrogen-Systems-Fuel Cells Research Grouping from the French National Council of Scientific Research (CNRS). For more than twenty years, his research interests include development of synthesis methods for nanostructured supported metals using green processes (microwave activation, electrochemical methods, etc.) and solvents (polyols, water) and their application as electrocatalysts in fuel cells, electrolysis cells and electrosynthesis reactors. He is also interested in the valorisation of agroresources using electrochemical methods. He has presented or published over a hundred articles in reviewed international journals, as well as several book chapters, invited lectures and world patents related to fuel cells, electrolysis cells and biomass conversion.

Affiliations and Expertise

Professor, University of Poitiers, Institute of Material and Environment of Poitiers (IC2MP)

Stève Baranton Author

Stève Baranton obtained his Ph.D. degree in electrochemistry in 2004. He worked conducted research in Canada and Japan before joining IC2MP as Assistant Professor. His current research interests include the development of synthesis methods for nanostructured supported metals using green processes (microwave activation, electrochemical methods, etc.) and solvents (polyols, water) and their application as electrocatalysts in fuel cells, electrolysis cells and electrosynthesis reactors. He also develops in situ spectroscopic methods. He has presented or published over 90 documents related to fuel cells, electrolysis cells and biomass conversion, including articles in reviewed international journals, book chapters, invited lectures and world patents.

Affiliations and Expertise

Assistant Professor, University of Poitiers, Institute of Material and Environment of Poitiers (IC2MP)

Thomas Audichon Author

Thomas Audichon obtained his PhD degree in Materials and Electrochemistry in 2014 from the University of Poitiers, France. He has a post-doctoral position at the Institute of Material and Environment of Poitiers (IC2MP). His current research interests include synthesis and characterisation of nanomaterials (oxides and metals) for oxygen reduction reaction and anodic activation of water in electrolysis cells, and formulation of membrane-electrodes assemblies and measurement of electrochemical performances on an electrolysis test bench. He published several papers in international peer reviewed journals on materials for water electrolysis cells.

Affiliations and Expertise

University of Poitiers, Institute of Material and Environment of Poitiers (IC2MP).

About the Series Editors

Bruno G. Pollet Series Editor

Bruno G. Pollet is a full Professor of Renewable Energy at the Department of Energy and Process Engineering at the Norwegian University of Science and Technology (NTNU) in Trondheim. His research covers a wide range of areas in Electrochemical Engineering, Electrochemical Energy and Sono-electrochemistry (the use of Power Ultrasound in Electrochemistry) from the development of novel materials, hydrogen fuel cell to water treatment/disinfection demonstrators & prototypes. He was a Professor of Energy Materials and Systems at the University of the Western Cape (South Africa) and R&D Director of the National Hydrogen South Africa (HySA) Systems Competence Centre. He was also a co-founder and an Associate Director of the University of Birmingham Centre for Hydrogen and Fuel Cell Research in the UK. He was awarded a Diploma in Chemistry and Material Sciences from the Université Joseph Fourier (France), a BSc (Hons) in Applied Chemistry from Coventry University (UK) and an MSc in Analytical Chemistry from The University of Aberdeen (UK). He also gained his PhD in Physical Chemistry in the field of Electrochemistry and Sonochemistry at the Coventry University Sonochemistry Centre.

Affiliations and Expertise

Centre for Renewable Energy, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway