Hydrodynamic Lubrication, Volume 33

1st Edition

Bearings and Thrust Bearings

Authors: J. Frene D. Nicolas B. Degueurce D. Berthe M. Godet
Hardcover ISBN: 9780444823663
eBook ISBN: 9780080534312
Imprint: Elsevier Science
Published Date: 10th November 1997
Page Count: 469
275.00 + applicable tax
170.00 + applicable tax
215.00 + applicable tax
270.00 + applicable tax
Unavailable
Compatible Not compatible
VitalSource PC, Mac, iPhone & iPad Amazon Kindle eReader
ePub & PDF Apple & PC desktop. Mobile devices (Apple & Android) Amazon Kindle eReader
Mobi Amazon Kindle eReader Anything else

Institutional Access


Table of Contents

Chapter headings and sub-chapters: Tribology from Antiquity to Our Times. The prehistoric period. The Greek and Roman period. Middle Ages and Renaissance. Toward the Industrial Revolution. The Industrial Revolution. Tribology in the 20th century. References. Lubricating Oils. Base oil. Additive agents. Viscosity of lubricants. Viscosimetry. Viscosity variation with temperature. Viscosity variation with pressure. Lubricants specifications. Non-Newtonian behavior of lubricants. Viscosity of gases. General Equations in Hydrodynamic Lubrication with a Newtonian Fluid. Generalized equations of the mechanics of viscous thin films. Physical interpretation. Energy equation in the mechanics of viscous thin films. Particular forms of the generalized equation of the mechanics of viscous thin films. Boundary conditions for smooth surfaces. Solving algorithms. Calculus of various parameters of the contact. Study of elementary loading cases. Applications. Remark on the Reynolds equation. Plane Sliders and Thrust Bearing Pads. Plane sliders with fixed geometry. Pad of finite dimensions. Thrust bearings with fixed geometry. Tilting pad thrust bearing. Global thermal effects. Theory-experiment comparisons. Static Characteristics of Journal Bearings. Laminar journal bearings. General considerations. Infinitely long journal bearing. The short bearing. Finite journal bearing. Global thermal effect. Application to the design of a journal bearing. Theory-experiment comparison. Dynamic Characteristics of Journal Bearings. Reynolds equation in dynamic regime. Linear modelling: dynamic coefficients. Infinitely short bearing. Infinitely-long bearing. Finite width bearing. Stability of journal bearing operation. Linear analysis. Theory-experiment comparison. Non Circular Journal Bearings with Fixed Geometry and with Tilting Pads. Multiple-lobe bearing. Tilting pad journal bea

Description

Hydrodynamic Lubrication is the culmination of over 20 years close, collaborative work by the five authors and discusses the practical use of the formalization of low pressure lubrication. The work concentrates on the developments to journal and thrust bearings and includes subjects such as:

• the dynamic behaviour of plain and tilting-pads

• the thermal aspects

• the positive and negative effects of non-cyclindricity and shape defects resulting from manufacturing or operation

• the effects of inertia

• the appearance of Taylor's vortices and of turbulence and their repercussions.

The book contains an abundance of test results objectively compared with theoretical conclusions and a chapter on "technical considerations" to ensure that draft mechanisms will work satisfactorily under the imposed conditions.

Hydrodynamic Lubrication is an essential reference book for future and practising engineers who want to put hydrodynamic and hydrostatic journal bearings and thrust bearings into operation under conditions of total safety.

Readership

For students, researchers and practising engineers working in the field of hydrodynamic lubrication.


Details

No. of pages:
469
Language:
English
Copyright:
© Elsevier Science 1997
Published:
Imprint:
Elsevier Science
eBook ISBN:
9780080534312
Hardcover ISBN:
9780444823663
Paperback ISBN:
9780444551115

About the Authors

J. Frene Author

D. Nicolas Author

Affiliations and Expertise

University of Poitiers, France

B. Degueurce Author

Affiliations and Expertise

Electricité de France, Chatou, France

D. Berthe Author

M. Godet Author

Affiliations and Expertise

INSA, Laboratoire de Mecanique des Contacts, Villeurbanne, France