Human Embryonic Stem Cells in Development - 1st Edition - ISBN: 9780128042519

Human Embryonic Stem Cells in Development, Volume 129

1st Edition

Serial Volume Editors: Ali Brivanlou
Hardcover ISBN: 9780128042519
Imprint: Academic Press
Published Date: 1st June 2018
Page Count: 536
Tax/VAT will be calculated at check-out Price includes VAT (GST)

Institutional Access

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

Chapters include:
Recapitulating pancreas development from human embryonic stem cells in a dish
Anne Grapin-Botton
Modeling mammalian gastrulation with embryonic stem cells
Eric Siggia
What can stem cell models tell us about human germ cell biology?
M. Azim Surani


Description

Human Embryonic Stem Cells in Development, Volume 129, is the latest release in the Current Topics in Developmental Biology series. Each chapter is written by an international board of authors.

Key Features

  • Provides the authority and expertise of leading contributors from an international board of authors
  • Presents the latest release in the Current Topics in Developmental Biology series

Readership

Researchers in cell, molecular, developmental and evolutionary biology and in genetics


Details

No. of pages:
536
Language:
English
Copyright:
© Academic Press 2018
Published:
Imprint:
Academic Press
Hardcover ISBN:
9780128042519

About the Serial Volume Editors

Ali Brivanlou Serial Volume Editor

Dr. Brivanlou received his doctoral degree in 1990 from the University of California, Berkeley. He joined Rockefeller in 1994 as assistant professor after postdoctoral work in Douglas Melton’s lab at Harvard University. Among his many awards are the Irma T. Hirschl/ Monique Weill-Caulier Trusts Career Scientist Award, the Searle Scholar Award, the James A. Shannon Director’s Award from the NIH and the Presidential Early Career Award for Scientists and Engineers. The Brivanlou laboratory has demonstrated that the TGF-β pathway plays a central role in inductive interactions leading to the establishment of different neural fates, which begins by the specification of the brain. In studies of frog embryos, Dr. Brivanlou has made several influential discoveries, including the finding that all embryonic cells will develop into nerve cells unless they receive signals directing them toward another fate. A concept, coined “the default model” of neural induction, postulates that neural fate determination requires the inhibition of an inhibitory signal. His laboratory has contributed to the molecular and biochemical understanding of the TGF-β signaling pathway and cross talk with other signaling networks, using comparative studies of frog and mouse embryos and mammalian cell culture. To address whether the default model of neural induction is conserved from amphibians to mammals (and humans in particular), Dr. Brivanlou’s laboratory was among the first to work directly in hESCs. Dr. Brivanlou and colleagues derived several hESC lines, called RUES1, 2 and 3 (Rockefeller University Embryonic Stem Cell Lines 1, 2 and 3). The RUES lines were among the first 13 hESC lines approved for use in research funded by the National Institutes of Health (NIH), under the NIH Guidelines for Human Stem Cell Research adopted in July 2009 under the Obama administration. Their current work focuses on the molecular dissection of the defining properties of ESCs — their capacity for self-renewal and their ability to differentiate into a range of cell types. Dr. Brivanlou’s overall goal is to use hESCs to study early human embryonic development. Several collaborations with Rockefeller University physics laboratories have provided new insight, from the use of quantum dots for in vivo embryonic imaging (with Albert J. Libchaber) to development of new statistical tools for DNA microarray and high throughput proteomic analysis. Ongoing collaboration with Rockefeller’s Eric D. Siggia focuses on using a high throughput microfluidic platform to program hESC differentiation toward specific fates by dynamic changes of the signaling landscape and without compromising genetic integrity. Thus, the first steps of stem cell differentiation are being scrutinized using new high-resolution techniques drawn from physics. This data will be organized and developed into a predictive tool to rationally reprogram specialized fates from hESCs.

Affiliations and Expertise

The Rockefeller University, NY, USA