COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Human Embryonic Stem Cells in Development - 1st Edition - ISBN: 9780128042519, 9780128043349

Human Embryonic Stem Cells in Development, Volume 129

1st Edition

Serial Volume Editor: Ali Brivanlou
Hardcover ISBN: 9780128042519
eBook ISBN: 9780128043349
Imprint: Academic Press
Published Date: 22nd May 2018
Page Count: 204
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

1. Modeling Mammalian Gastrulation With Embryonic Stem Cells
Eric D. Siggia and Aryeh Warmflash
2. What Can Stem Cell Models Tell Us About Human Germ Cell Biology?
Naoko Irie, Anastasiya Sybirna and M. Azim Surani
3. From Human Pluripotent Stem Cells to Cortical Circuits
Marc Astick and Pierre Vanderhaeghen
4. Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease
Juliana Brown, Giorgia Quadrato and Paola Arlotta
5. The Long Road to Making Muscle In Vitro
Olivier Pourquié, Ziad Al Tanoury and Jérome Chal
6. Recapitulating and Deciphering Human Pancreas Development From Human Pluripotent Stem Cells in a Dish
Maja B.K. Petersen, Carla A.C. Gonçalves, Yung H. Kim and Anne Grapin-Botton


Human Embryonic Stem Cells in Development, Volume 129, the latest release in the Current Topics in Developmental Biology series, highlights new advances in the field, with this new volume presenting interesting chapters on topics such as recapitulating pancreas development from human embryonic stem cells in a dish, modeling mammalian gastrulation with embryonic stem cells, and a section on what stem cells tell us about human germ cell biology. Each chapter is written by an international board of authors.

Key Features

  • Provides the authority and expertise of leading contributors from an international board of authors
  • Presents the latest release in the Current Topics in Developmental Biology series


Researchers in cell, molecular, developmental and evolutionary biology and in genetics


No. of pages:
© Academic Press 2018
22nd May 2018
Academic Press
Hardcover ISBN:
eBook ISBN:

Ratings and Reviews

About the Serial Volume Editor

Ali Brivanlou

Dr. Brivanlou received his doctoral degree in 1990 from the University of California, Berkeley. He joined Rockefeller in 1994 as assistant professor after postdoctoral work in Douglas Melton’s lab at Harvard University. Among his many awards are the Irma T. Hirschl/ Monique Weill-Caulier Trusts Career Scientist Award, the Searle Scholar Award, the James A. Shannon Director’s Award from the NIH and the Presidential Early Career Award for Scientists and Engineers. The Brivanlou laboratory has demonstrated that the TGF-β pathway plays a central role in inductive interactions leading to the establishment of different neural fates, which begins by the specification of the brain. In studies of frog embryos, Dr. Brivanlou has made several influential discoveries, including the finding that all embryonic cells will develop into nerve cells unless they receive signals directing them toward another fate. A concept, coined “the default model” of neural induction, postulates that neural fate determination requires the inhibition of an inhibitory signal. His laboratory has contributed to the molecular and biochemical understanding of the TGF-β signaling pathway and cross talk with other signaling networks, using comparative studies of frog and mouse embryos and mammalian cell culture. To address whether the default model of neural induction is conserved from amphibians to mammals (and humans in particular), Dr. Brivanlou’s laboratory was among the first to work directly in hESCs. Dr. Brivanlou and colleagues derived several hESC lines, called RUES1, 2 and 3 (Rockefeller University Embryonic Stem Cell Lines 1, 2 and 3). The RUES lines were among the first 13 hESC lines approved for use in research funded by the National Institutes of Health (NIH), under the NIH Guidelines for Human Stem Cell Research adopted in July 2009 under the Obama administration. Their current work focuses on the molecular dissection of the defining properties of ESCs — their capacity for self-renewal and their ability to differentiate into a range of cell types. Dr. Brivanlou’s overall goal is to use hESCs to study early human embryonic development. Several collaborations with Rockefeller University physics laboratories have provided new insight, from the use of quantum dots for in vivo embryonic imaging (with Albert J. Libchaber) to development of new statistical tools for DNA microarray and high throughput proteomic analysis. Ongoing collaboration with Rockefeller’s Eric D. Siggia focuses on using a high throughput microfluidic platform to program hESC differentiation toward specific fates by dynamic changes of the signaling landscape and without compromising genetic integrity. Thus, the first steps of stem cell differentiation are being scrutinized using new high-resolution techniques drawn from physics. This data will be organized and developed into a predictive tool to rationally reprogram specialized fates from hESCs.

Affiliations and Expertise

The Rockefeller University, NY, USA