Polymer blends offer properties not easily obtained through the use of a single polymer, including the ability to withstand high temperatures. High Temperature Polymer Blends outlines the characteristics, developments, and use of high temperature polymer blends.

The first chapter introduces high temperature polymer blends, their general principles, and thermodynamics. Further chapters go on to deal with the characterization of high temperature polymer blends for specific uses, such as fuel cells and aerospace applications. The book discusses different types of high temperature polymer blends, including liquid crystal polymers, polysulfones, and polybenzimidazole polymer blends and their commercial applications.

High Temperature Polymer Blends provides a key reference for material scientists, polymer scientists, chemists, and plastic engineers, as well as academics in these fields.

Key Features

  • Reviews characterization methods and analysis of the thermodynamic properties of high temperature polymer blends
  • Reviews the use of materials such as liquid crystals as reinforcements as well as applications in such areas as energy and aerospace engineering


Industrial and academic researchers and market and applications developers in the field of polymer modification and polymer product development

Table of Contents

  • Dedication
  • Contributor contact details
  • Chapter 1: Introduction to high temperature polymer blends
    • Abstract:
    • 1.1 Introduction
    • 1.2 General principles of polymer blending
    • 1.3 Thermodynamics of polymer blends
    • 1.4 Immiscible blends
    • 1.5 Conclusions
  • Chapter 2: Characterization methods for high temperature polymer blends
    • Abstract:
    • 2.1 Introduction
    • 2.2 High temperature polymer blends (HTPBs)
    • 2.3 Methods of polymer characterization
    • 2.4 Characterization of polymer blends
    • 2.5 Characterization of HTPBs: chemical constitutions and molecular weights
    • 2.6 Characterization of HTPBs: chemical-, thermal-, mechanical- and radiation-induced degradation
    • 2.7 Stabilization of HTPBs
    • 2.8 Challenges in blending polymers
    • 2.9 Summary
    • 2.10 Future trends
    • 2.12 Appendix: Nomenclature
  • Chapter 3: Characterization of high temperature polymer blends for specific applications: fuel cells and aerospace applications
    • Abstract:
    • 3.1 Introduction
    • 3.2 High temperature polymer blends (HTPBs) for membrane applications
    • 3.3 Fuel cell (FC) membrane applications
    • 3.4 Characterization of HTPBs for FC applications
    • 3.5 Solar cell (SC) applications
    • 3.6 Characterization of HTPBs for polymeric solar cells (PSCs)
    • 3.7 Aerospace applications
    • 3.8 Characterization of HTPBs for aerospace applications
    • 3.9 Summary
    • 3.11 Appendix: Nomenclature
  • Chapter 4: Thermodynamics of high temperature polymer blends
    • Abstract:
    • 4.1 Introduction
    • 4.2 Blending miscible high temperature polymers
    • 4.3 Poly (2,2' (m-phenylene)-5-5' bibenzimidazole) (PBI) blends
    • 4.4 Polyimide blends
    • 4.5 Liquid crystal polymer blends
    • 4.6 Molecular composites


No. of pages:
© 2014
Woodhead Publishing
Print ISBN:
Electronic ISBN:

About the editor

Mark T. DeMeuse

Mark T. DeMeuse is a Consultant at MTD Polymer Consulting. He specializes in material development and polymer characterization methodologies.