Harnessing Nanoscale Surface Interactions

Harnessing Nanoscale Surface Interactions

Contemporary Synthesis, Applications and Theory

1st Edition - November 24, 2019

Write a review

  • Editor: David Henry
  • eBook ISBN: 9780128138939
  • Paperback ISBN: 9780128138922

Purchase options

Purchase options
DRM-free (PDF, Mobi, EPub)
Available
Sales tax will be calculated at check-out

Institutional Subscription

Free Global Shipping
No minimum order

Description

Harnessing Nanoscale Surface Interactions: Contemporary Synthesis, Applications and Theory provides coverage of contemporary theoretical and experimental approaches to understanding the interactions of molecules with nanomaterial surfaces and how to utilize these processes for improved synthesis and application of materials. The book reviews recently developed theoretical techniques to explore bonding interactions in nanoclusters and small molecules, along with modern molecular dynamics approaches for investigation adsorption of large molecules on nanomaterials. Novel experimental approaches are described that provide improved control of the synthesis of metal nanoparticles and measurement of their absorption properties. The potential for nanomaterials to address a range of environmental problems is also demonstrated by a selection of specific applications. Chapters discuss experimental synthesis approaches, experimental analysis and applications, and theoretical approaches for harnessing nanoscale surface interactions.

Key Features

  • Includes exploration of the latest theoretical techniques, including regional density functional theory and molecular dynamics simulations
  • Addresses nanoscale interfaces and how they relate to the toxicity of nanomaterials, crucial for potential diagnosis and medical applications

Readership

Materials Scientists and engineers, materials chemists, physicists, researchers working on nanomaterials

Table of Contents

  • CHAPTER 1 Sustainable utilization of renewable plant-based food wastes for the green synthesis of metal nanoparticles

    CHAPTER 2 Nanotechnology and the environment

    CHAPTER 3 Magnetic materials and magnetic nanocomposites for biomedical application

    CHAPTER 4 Contemporary analysis of the influence of adsorbents on the structure, stability, and reactivity of main group nanoparticles using regional density functional theory

    CHAPTER 5 A new DLVO-R theory: surface roughness and nanoparticle stability

    CHAPTER 6 Nanomaterials in 3D bioprinting: synthesis, modification, and application

Product details

  • No. of pages: 188
  • Language: English
  • Copyright: © Elsevier 2019
  • Published: November 24, 2019
  • Imprint: Elsevier
  • eBook ISBN: 9780128138939
  • Paperback ISBN: 9780128138922

About the Series Volume Editor

David Henry

Dr. Henry’s expertise is in the area of physical chemistry, materials simulation, and computational chemistry and involves applying an extensive range of methodologies including electronic first principles and force field/classical methods to chemical, biological, and materials related problems. At Murdoch University, Dr. Henry teaches Physical Chemistry, Organic and Biological Chemistry, and Materials Chemistry. He leads a group that applies computational and theoretical methods to design gallium-based nanocatalysts and investigate the stability and reactivity of metal complexes under physiological conditions.

Affiliations and Expertise

Senior Lecturer, Murdoch University, Australia

Ratings and Reviews

Write a review

There are currently no reviews for "Harnessing Nanoscale Surface Interactions"