COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Handbook of Nutrition, Diet, and the Eye - 1st Edition - ISBN: 9780124017177, 9780124046061

Handbook of Nutrition, Diet, and the Eye

1st Edition

0.0 star rating Write a review
Editor: Victor Preedy
Hardcover ISBN: 9780124017177
eBook ISBN: 9780124046061
Imprint: Academic Press
Published Date: 8th April 2014
Page Count: 704
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


The Handbook of Nutrition, Diet and the Eye is the first book to thoroughly address common features and etiological factors in how dietary and nutritional factors affect the eye.

The ocular system is perhaps one of the least studied organs in diet and nutrition, yet the consequences of vision loss can be devastating. One of the biggest contributors to complete vision loss in the western hemisphere is diabetes, precipitated by metabolic syndrome. In some developing countries, micronutrient deficiencies are major contributory factors to impaired vision. However, there are a range of ocular defects that have either their origin in nutritional deficiencies or excess or have been shown to respond favorably to nutritional components. The eye from the cornea to the retina may be affected by nutritional components. Effects may be physiological or molecular.

This book represents essential reading for nutritionists, dietitians, optometrists, ophthalmologists, opticians, endocrinologists, and other clinicians and researchers interested in eye health and vision in general.

Key Features

  • Saves clinicians and researchers time in quickly accessing the very latest details on a broad range of nutrition, ocular health, and disease issues
  • Provides a common language for nutritionists, nutrition researchers, optometrists, and ophthalmologists to discuss how dietary and nutritional factors, and related diseases and syndromes affect the eye
  • Preclinical, clinical, and population studies will help nutritionists, dieticians, and clinicians map out key areas for research and further clinical recommendations


Nutritionists, dieticians, optometrists, ophthalmologists, opticians, endocrinologists, and other clinicians and researchers interested in eye health and vision in general.

Table of Contents

    <li>Preface</li> <li>Section 1. Introductions and Overviews<ul><li>Chapter 1. The Eye and Vision: An Overview<ul><li>Introduction</li><li>Development of the Eye</li><li>The Ocular Adnexa</li><li>The Posterior Structures of the Eye</li><li>Visual Pathway</li><li>Take-Home Messages</li></ul></li><li>Chapter 2. Age-Related Macular Degeneration: An Overview<ul><li>Introduction</li><li>Epidemiology</li><li>Risk Factors</li><li>Pathogenesis</li><li>Classification</li><li>Natural History</li><li>Retinal Imaging for the Diagnosis and Management of Age-Related Macular Degeneration</li><li>Management</li><li>Future Directions</li><li>Take-Home Messages</li></ul></li><li>Chapter 3. Cataracts: An Overview<ul><li>Introduction</li><li>Etymology</li><li>Epidemiology</li><li>Classification, Pathogenesis, and Risk Factors</li><li>Clinical Presentation</li><li>Diagnostic Evaluation</li><li>Prevention</li><li>Treatment</li><li>Take-Home Messages</li></ul></li><li>Chapter 4. Glaucoma: An Overview<ul><li>Introduction</li><li>Definition of Glaucoma and its Classification</li><li>Intraocular Pressure as a Risk Factor</li><li>Pathogenesis of Glaucoma</li><li>Epidemiology Hints</li><li>Conclusions</li></ul></li><li>Chapter 5. Diabetic Retinopathy: An Overview<ul><li>Introduction</li><li>Epidemiology</li><li>Natural History</li><li>Pathophysiology</li><li>Biochemical Changes</li><li>Mitochondrial Dysfunction</li><li>Neuronal Dysfunction and Inflammation</li><li>Vascular Damage</li><li>Diagnosis and Prevention</li><li>Treatment of Diabetic Retinopathy and Diabetic Macular Edema</li></ul></li></ul></li> <li>Section 2. Macular Degeneration<ul><li>Chapter 6. Trace Elements, Vitamins, and Lipids and Age-Related Macular Degeneration: An Overview of the Current Concepts on Nutrients and AMD<ul><li>Introduction</li><li>Carotenoids</li><li>Trace Elements</li><li>Vitamins</li><li>Lipids</li><li>Epigenetics and Nutrients</li><li>Resveratrol</li><li>Supplementation with Combined Nutrients</li><li>Conclusion</li><li>Take-Home Messages</li></ul></li><li>Chapter 7. The Role of Lipids and Lipid Metabolism in Age-Related Macular Degeneration<ul><li>Introduction</li><li>Retinal Lipids</li><li>Mechanism and Pathogenesis of Age-Related Macular Degeneration</li><li>Conclusion</li><li>Take-Home Messages</li></ul></li><li>Chapter 8. Carotenoids and Age-Related Macular Degeneration<ul><li>Introduction</li><li>Chemistry of Macular Carotenoids</li><li>Measurement of Macular Carotenoids</li><li>Diet and Macular Carotenoids</li><li>Absorption, Bioavailability, and Metabolism of Macular Carotenoids</li><li>Protective Role of Macular Pigments and Age-Related Macular Degeneration</li><li>Conclusion</li><li>Take-Home Messages</li></ul></li></ul></li> <li>Section 3. Glaucomas<ul><li>Chapter 9. Glaucoma and Antioxidant Status<ul><li>Introduction</li><li>Oxidative Stress</li><li>Oxidative Stress in the Pathophysiology of Glaucoma</li><li>Antioxidants</li><li>Antioxidant Status in Glaucoma</li><li>Potential Value of Antioxidants for the Treatment of Glaucoma</li><li>Take-Home Messages</li></ul></li><li>Chapter 10. Quercetin and Glaucoma<ul><li>Introduction</li><li>Oxidative Stress</li><li>Oxidative Stress and Transcription</li><li>Oxidative Stress and Glaucoma</li><li>Oxidative Stress and Trabecular Meshwork</li><li>Quercetin and Glaucoma</li><li>Conclusions</li><li>Take-Home Messages</li></ul></li><li>Chapter 11. Diabetes Mellitus and Glaucoma<ul><li>Introduction</li><li>Epidemiology: Diabetes Mellitus and Primary Open-Angle Glaucoma</li><li>Epidemiology: Diabetes Mellitus and Other Types of Glaucoma</li><li>Pathophysiologic Link Between Diabetes Mellitus and Glaucoma</li><li>Conclusions</li><li>Take-Home Messages</li></ul></li><li>Chapter 12. Dietary Polyunsaturated Fatty Acids, Intraocular Pressure, and Glaucoma<ul><li>Introduction</li><li>Epidemiologic Data</li><li>Laboratory Research</li><li>Take-Home Messages</li></ul></li></ul></li> <li>Section 4. Cataracts<ul><li>Chapter 13. Riboflavin and the Cornea and Implications for Cataracts<ul><li>Introduction</li><li>History</li><li>Dietary Requirements</li><li>Biology</li><li>Keratoconus and Riboflavin</li><li>Ariboflavinosis</li><li>Cataract</li><li>Conclusions</li><li>Take-Home Messages</li></ul></li><li>Chapter 14. Diabetic Cataract and Role of Antiglycating Phytochemicals<ul><li>Introduction</li><li>Inhibitory Potential of Foods</li><li>Inhibitory Potential of Single and Polyherbal/Ayurvedic Drugs</li><li>Inhibitory Potential of Individual Phytochemicals</li><li>Take-Home Messages</li></ul></li><li>Chapter 15. Role of Amino Acids on Prevention of Nonenzymatic Glycation of Lens Proteins in Senile and Diabetic Cataract<ul><li>Introduction</li><li>History and Overview of the Formation of Advanced Glycation End-Products</li><li>Glycating Agents</li><li>Types of Advanced Glycation End-Product</li><li>Advanced Glycation End-Product Formation in the Lens</li><li>Effects of Advanced Glycation End-Products on the Function of Proteins</li><li>Biological Detoxification of Advanced Glycation End-Products</li><li>Prevention/Inhibition of Advanced Glycation End-Product Formation</li><li>Inhibitory Effects of Amino Acids on Advanced Glycation End-Product Formation and Cataract</li><li>Take-Home Messages</li></ul></li><li>Chapter 16. Selenium Supplementation and Cataract<ul><li>Introduction</li><li>Dose of Selenium Recommended for Supplementation</li><li>Previous Studies on Selenium Supplementation</li><li>Selenium Deficiency and Cataract</li><li>Preventive Roles of Selenium Against Cataract</li><li>Selenium and GPx</li><li>Selenium and Phosphatidylinositol 3-Kinase (PI3-K)/Protein Kinase B (AKT) Pathway</li><li>Selenium and Hsp70</li><li>Selenium and Deoxyribonucleic Acid Methylation</li><li>Take-Home Messages</li></ul></li></ul></li> <li>Section 5. Other Eye Conditions<ul><li>Chapter 17. Vitamin A with Cyclosporine for Dry Eye Syndrome<ul><li>Introduction</li><li>Dry Eye</li><li>Dry Eye and Inflammation</li><li>Conventional Treatment of Dry Eye</li><li>Anti-Inflammatory Treatment of Dry Eye</li><li>Supplement Treatments in Dry Eye</li><li>Vitamin A</li><li>Cyclosporine A</li><li>Conclusion</li><li>Take-Home Messages</li></ul></li><li>Chapter 18. Dietary N-3 Polyunsaturated Fatty Acids and Dry Eye<ul><li>Introduction</li><li>Dry Eye: An Inflammatory Pathology</li><li>Dietary N-3 Polyunsaturated Fatty Acids: Their Roles in Inflammation</li><li>N-3 Polyunsaturated Fatty Acids and Dry Eye</li><li>Take-Home Messages</li></ul></li></ul></li> <li>Section 6. Obesity, Metabolic Syndrome, and Diabetes<ul><li>Chapter 19. Metabolic Syndrome and Cataract<ul><li>Introduction</li><li>Definitions of the Metabolic Syndrome</li><li>Pathophysiology of Metabolic Syndrome</li><li>Association Between Metabolic Syndrome, Components of the Metabolic Syndrome, and Cataract</li><li>Take-Home Messages</li></ul></li><li>Chapter 20. Childhood Obesity, Body Fatness Indices, and Retinal Vasculature<ul><li>Introduction</li><li>Childhood Obesity</li><li>Assessments of Retinal Vasculature</li><li>Childhood Obesity, Body Fatness Indices, and Retinal Vasculature</li><li>Future Studies</li><li>Take-Home Messages</li></ul></li><li>Chapter 21. Visual Evoked Potentials and Type-2 Diabetes Mellitus<ul><li>Introduction</li><li>Visual Evoked Potentials</li><li>Review of Literature</li><li>Take-Home Messages</li></ul></li></ul></li> <li>Section 7. Macronutrients<ul><li>Chapter 22. Glycemic Index and Age-Related Macular Degeneration<ul><li>Introduction</li><li>Glycemic Index</li><li>Glycemic Index and Human Diseases</li><li>Mechanism for Hyperglycemia to Diabetic Retinopathy and Age-Related Macular Degeneration</li><li>Take-Home Messages</li></ul></li><li>Chapter 23. Fish-Oil Fat Emulsion and Retinopathy in Very Low Birth Weight Infants<ul><li>Introduction</li><li>Preterm Infant Deficit of LC-PUFAS: The Rationale for Administration</li><li>Potential Consequences of DHA Deficiency in the Visual System in Preterm Infants</li><li>Retinopathy of Prematurity &#x2013; Possible Role of &#x3C9;-3 LC-PUFAs in Prevention of Disease</li><li>Safety of Parenteral Supplementation of Fish-Oil-Based Fat Emulsion in Preterm Infants</li><li>Fish-Oil Fat Emulsion Supplementation May Reduce the Risk of Severe Retinopathy in VLBW Infants</li><li>Take-Home Messages</li></ul></li><li>Chapter 24. The Impact of Low Omega-3 Fatty Acids Diet on the Development of the Visual System<ul><li>Development of the Visual System</li><li>Critical Periods for Brain Development</li><li>Omega-3 and Brain Development</li><li>Role of Omega-3 on Development of Central Visual Connections</li><li>Take-Home Messages</li></ul></li><li>Chapter 25. Prenatal Omega-3 Fatty Acid Intake and Visual Function<ul><li>Introduction</li><li>First Evidence of Omega-3 Fatty Acid Effects on Visual Function</li><li>Beneficial Effects on Human Retinal Function</li><li>Omega-3 Fatty Acid Exposure and Infant Visual Acuity</li><li>Long-Term Benefits of Developmental Exposure to Omega-3 Polyunsaturated Fatty Acids</li><li>Take-Home Messages</li></ul></li><li>Chapter 26. Omega-3 and Macular Pigment Accumulation: Results from the Pimavosa Study<ul><li>Take-Home Messages</li></ul></li><li>Chapter 27. Dietary Carbohydrate and Age-Related Cataract<ul><li>Introduction</li><li>Definition of Dietary Glycemic Index and Dietary Glycemic Load</li><li>Epidemiologic Studies</li><li>Pathogeny and Mechanisms</li><li>Take-Home Messages</li></ul></li><li>Chapter 28. Fruit and Vegetable Intake and Age-Related Cataract<ul><li>Introduction</li><li>Fruit and Vegetables and Nutrients</li><li>Nutrition and the Prevention of Cataract</li><li>Epidemiologic Studies Correlating Fruit and Vegetable Intake with the Risk of Cataract</li><li>Assessment of Fruit and Vegetable Intake in Epidemiologic Studies</li><li>Take-Home Messages</li></ul></li><li>Chapter 29. Retinal Degeneration and Cholesterol Deficiency<ul><li>Introduction</li><li>The AY9944 Rat Model of Smith-Lemli-Opitz Syndrome and Retinal Degeneration</li><li>Beyond the Immediate Biosynthetic Defect in Smith-Lemli-Opitz Syndrome</li><li>Therapeutic Intervention with Dietary Cholesterol Supplementation</li><li>Oxidation of 7-Dehydrocholesterol: Potential Key to the Pathobiology and the Treatment of Smith-Lemli-Opitz Syndrome</li><li>Hypothesis Concerning the Mechanism of Retinal Degeneration in the Smith-Lemli-Opitz Syndrome Rat Model</li><li>Take-Home Messages</li></ul></li></ul></li> <li>Section 8. Micronutrients<ul><li>Chapter 30. Vitamin A, Zinc, Dark Adaptation, and Liver Disease<ul><li>History of Vitamin A and Night Blindness</li><li>Vitamin A Absorption and Metabolism</li><li>Alterations in Vitamin A Status in Liver Disease</li><li>Dark Adaptation Studies in Liver Disease</li><li>Take-Home Messages</li></ul></li><li>Chapter 31. Vitamin C Functions in the Cornea: Ultrastructural Features in Ascorbate Deficiency<ul><li>Introduction</li><li>Vitamin C</li><li>Corneal Ultrastructure</li><li>Vitamin C in the Cornea</li><li>Take-Home Messages</li></ul></li><li>Chapter 32. Vitamin Transport Across the Blood&#x2013;Retinal Barrier: Focus on Vitamins C, E, and Biotin<ul><li>Introduction</li><li>Transport System at the Blood&#x2013;Retinal Barrier</li><li>Vitamin C in the Retina</li><li>Vitamin C Transport Across the Blood&#x2013;Retinal Barrier</li><li>Vitamin C Transport in M&#xFC;ller Cells</li><li>Vitamin E in the Retina</li><li>Vitamin E Transport Across the Blood&#x2013;Retinal Barrier</li><li>Biotin in the Retina</li><li>Biotin Transport Across the Blood&#x2013;Retinal Barrier</li><li>Conclusions</li><li>Take-Home Messages</li></ul></li><li>Chapter 33. Vitamin D and Diabetic Retinopathy<ul><li>Overview of Vitamin D Insufficiency/Deficiency</li><li>Overview of Diabetic Retinopathy</li><li>Basic Science Research on Vitamin D and Diabetic Retinopathy</li><li>Clinical Studies Assessing Vitamin D and Diabetic Retinopathy</li><li>Conclusions</li><li>Take-Home Messages</li></ul></li><li>Chapter 34. Vitamin D and Age-Related Macular Degeneration<ul><li>Introduction</li><li>Vitamin D</li><li>Age-Related Macular Degeneration</li><li>Vitamin D and Age-Related Macular Degeneration</li><li>How to Supply Vitamin D</li><li>Prospective</li><li>Take-Home Messages</li></ul></li><li>Chapter 35. Folate Transport in Retina and Consequences on Retinal Structure and Function of Hyperhomocysteinemia<ul><li>Introduction</li><li>Folic Acid (Folate)</li><li>Role of Folate in Metabolism</li><li>Overview of the Retina</li><li>Mechanisms of Folate Uptake in the Retina</li><li>Regulation of the Expression and Activity of Folate Transport Proteins in Retinal Cells</li><li>Hyperhomocysteinemia and Retinal Health</li><li>In Vitro and In Vivo Studies of Hyerhomocysteinemia and the Retina</li><li>Take-Home Messages</li></ul></li><li>Chapter 36. Selenium and Graves&#x2019; Orbitopathy<ul><li>Introduction</li><li>Selenium</li><li>Oxidative Stress and Graves&#x2019; Orbitopathy</li><li>Human Studies</li><li>Selenium and Graves&#x2019; Orbitopathy</li><li>Take-Home Messages</li></ul></li><li>Chapter 37. Zinc Deficiency and the Eye<ul><li>Introduction</li><li>Zinc Deficiency in Animal Models</li><li>Zinc Deficiency and Retinal Physiologic Manifestations</li><li>Zinc and Age-Related Macular Degeneration</li><li>Zinc and Cataract</li><li>Zinc and Ocular Surface Disease</li><li>Take-Home Messages</li></ul></li><li>Chapter 38. Impact of Impaired Maternal Vitamin A Status on Infant Eyes<ul><li>Introduction</li><li>Systemic Vitamin A Regulation</li><li>Vitamin A and Ocular Embryogenesis</li><li>Vitamin A and Normal Ophthalmologic Ocular Function</li><li>Vitamin A and Human Ocular Disease</li><li>Vitamin A and Multisystem Disease Phenotypes</li><li>Neonatal Vitamin A Deficiency Syndromes Consequent to Maternal Hypovitaminosis A</li><li>Conclusions and Future Perspectives</li><li>Take-Home Messages</li></ul></li><li>Chapter 39. Optic Neuropathies Caused by Micronutrient Deficiencies and Toxins<ul><li>Introduction</li><li>Epidemiology and Etiopathogenesis of Nutritional Optic Neuropathies</li><li>Clinical Manifestations of Nutritional Optic Neuropathies</li><li>Diagnosis of Nutritional Optic Neuropathies</li><li>Vitamin B1 (Thiamine) Deficiency</li><li>Vitamin B12 (Cobalamin) Deficiency</li><li>Folate Deficiency</li><li>Copper Deficiency</li><li>Epidemic Nutritional Optic Neuropathies</li><li>Redefinition of Tobacco&#x2013;Alcohol Amblyopia</li><li>Take-Home Messages</li></ul></li><li>Chapter 40. Space Flight Ophthalmic Changes, Diet, and Vitamin Metabolism<ul><li>Introduction</li><li>Cataracts</li><li>Vision Changes After Long-Duration Space Flight</li><li>B-Vitamin-Dependent One-Carbon Transfer Pathway</li><li>Optic Neuropathy and B Vitamins</li><li>Environmental Factors</li><li>Take-Home Messages</li></ul></li></ul></li> <li>Section 9. Nutraceuticals<ul><li>Chapter 41. Flavonoids and Visual Function: Observations and Hypotheses<ul><li>Introduction</li><li>Review of Existing Evidence</li><li>New Findings</li><li>Concluding Remarks</li><li>Take-Home Messages</li></ul></li><li>Chapter 42. Polyphenols in Vision and Eye Health<ul><li>Introduction</li><li>Beneficial Effects of Flavonoids on Visual Signal Transduction</li><li>Beneficial Actions of Flavonoids on Ocular Diseases and Disorders</li><li>Beneficial Influences of Polyphenols on Ocular Health Evidenced in Animal Models</li><li>Take-Home Messages</li></ul></li><li>Chapter 43. Natural Products and Retinal Ganglion Cells: Protective Roles of Edible Wild Vegetables Against Oxidative Stress in Retinal Ganglion Cells<ul><li>Introduction</li><li>Neuroprotection of Retinal Ganglion Cells</li><li>Use of Natural Products to Protect Retinal Ganglion Cells</li><li>Use of Wild Vegetables to Protect Retinal Ganglion Cells</li><li>Conclusions</li><li>Take-Home Messages</li></ul></li><li>Chapter 44. Plant Stanol and Sterol Esters and Macular Pigment Optical Density<ul><li>Age-Related Macular Degeneration</li><li>Carotenoids</li><li>Macular Pigment</li><li>Plant Sterols and Stanols</li><li>Take-Home Messages</li></ul></li><li>Chapter 45. Seeds of Cornus officinalis and Diabetic Cataracts<ul><li>Introduction</li><li>Cornus Officinalis Sieb. et Zucc</li><li>Extraction and Isolation of Compounds from the Seeds of Cornus Officinalis</li><li>Inhibitory Effect on Advanced Glycation End-Product Formation</li><li>Indirect Enzyme-Linked Immunosorbent Assay of the Inhibitory Effect on Age Formation by Indirect Enzyme-Linked Immunosorbent Assay</li><li>Inhibitory Effect on Advanced Glycation End-Product&#x2013;Bovine Serum Albumin Cross-Linking to Collagen</li><li>Breaking Effect on Advanced Glycation End-Product&#x2013;Bovine Serum Albumin Cross-Links Formed In Vitro</li><li>Rat Lens Aldose Reductase Inhibition Assay</li><li>Rat Lens Organ Culture and Analysis of Lens Opacity</li><li>Conclusions</li><li>Take-Home Messages</li></ul></li><li>Chapter 46. Lutein and the Retinopathy of Prematurity<ul><li>Introduction</li><li>Retinopathy of Prematurity: Pathogenesis</li><li>Retinopathy of Prematurity: Staging</li><li>Macular Carotenoids: Retinal Distribution, Metabolism, and Function</li><li>Lutein and the Retinopathy of Prematurity</li><li>Take-Home Messages</li></ul></li><li>Chapter 47. Dietary Wolfberry and Retinal Degeneration<ul><li>Introduction</li><li>Botanical Aspects of Wolfberry</li><li>Bioactive Constituents of Wolfberry</li><li>Bioavailability of Wolfberry</li><li>Wolfberry and Prevention of Macular Degeneration</li><li>Wolfberry Polysaccharides and Retinitis Pigmentosa</li><li>Wolfberry Polysaccharides and Ganglion Cell Survival in Retinal Ischemia and Glaucoma</li><li>Wolfberry and Diabetic Retinal Degeneration</li><li>Potential Wolfberry&#x2013;Drug Interactions and Side Effects</li><li>Conclusion</li><li>Take-Home Messages</li></ul></li><li>Chapter 48. Sea Buckthorn, Dry Eye, and Vision<ul><li>Introduction</li><li>Bioactive Compounds of Sea Buckthorn Berry</li><li>Sea Buckthorn Oil for Dry Eye</li><li>Effects of Sea Buckthorn on Components of Metabolic Syndrome Associated With Retinal Function</li><li>Take-Home Messages</li></ul></li><li>Chapter 49. Resveratrol and the Human Retina<ul><li>Introduction</li><li>Structure and Properties of Resveratrol and its Derivatives</li><li>Bioavailability and Safety of Resveratrol</li><li>Antioxidant Properties of Resveratrol in Experimental Eye Disease Models</li><li>Proapoptotic and Antiapoptotic Properties of Resveratrol from In Vitro Experiments</li><li>Antiproliferative Potential of Resveratrol In Vitro Experiments</li><li>Antiangiogenic Properties of Resveratrol in Experimental Retina Models</li><li>Resveratrol as a Sirtuin Activator</li><li>Resveratrol as a Large-Conductance Calcium-Activated Potassium Channel Modulator</li><li>Take-Home Messages</li></ul></li><li>Chapter 50. Acetyl-L-Carnitine as a Nutraceutical Agent in Preventing Selenite-Induced Cataract<ul><li>Introduction</li><li>Oxidative Stress and Cataract Formation</li><li>Selenite Cataract</li><li>Influence of Nutrition Supplementation and Cataract Prevention</li><li>Acetyl-L-Carnitine</li><li>Take-Home Messages</li></ul></li><li>Chapter 51. Taurine Deficiency and the Eye<ul><li>Introduction</li><li>Taurine Depletion and Photoreceptor Degeneration</li><li>Taurine Depletion and Retinal Ganglion Cell Degeneration</li><li>Taurine-Induced Molecular and Cellular Mechanisms</li><li>Other Eye Structures</li><li>Take-Home Messages</li></ul></li></ul></li> <li>Section 10. Nutrigenomics and Molecular Biology of Eye Disease<ul><li>Chapter 52. Gene Expression and the Impact of Antioxidant Supplements in the Cataractous Lens<ul><li>Introduction</li><li>Antioxidants and Prevention of Cataract Progression</li><li>Role of Nutrition in Cataract Prevention: Epidemiologic Studies</li><li>Possible Indicators of the Effects of Antioxidant Supplements in the Lens</li><li>Gene Expression as an Indicator of Antioxidant Enzyme Production</li><li>G6PDH and 18S rRNA Gene Expression in Lenticular Anterior Capsule after Ocuvite+Lutein&#xAE;</li><li>Methodologic Considerations of Measuring Messenger RNA Expression of G6PDH and 18S rRNA in Lenticular Anterior Capsule</li><li>Possible Role of Antioxidant Supplement in Increased G6PDH and 18S rRNA Expression</li><li>Conclusions</li><li>Take-Home Messages</li></ul></li><li>Chapter 53. The Adenosine A2a Receptor and Diabetic Retinopathy<ul><li>Introduction</li><li>Hyperglycemia</li><li>Adenosine and its Receptors</li><li>Oxidative Stress and the Adenosine A2a Receptor</li><li>Vascular Cells, Hyperglycemia, and Adenosine</li><li>Nerve Cells</li><li>Variants of the Adenosine A2a Receptor and Proliferative Diabetic Retinopathy</li><li>Therapies Based on the Adenosine A2a Receptor</li><li>Take-Home Messages</li></ul></li><li>Chapter 54. Effects of Environmental, Genetic, and Epigenetic Factors on Platelet Glycoproteins and the Development of Diabetic Retinopathy<ul><li>Introduction</li><li>Pathogenesis of Diabetic Retinopathy</li><li>Platelets and Diabetic Retinopathy</li><li>C825T Polymorphism of the G-Protein-Coupled Receptor Gene</li><li>Genetic Factors and &#x3B1;2&#x3B2;1 Integrin</li><li>Genetic Factors and Glycoprotein IIb-IIIa</li><li>Epigenetic Factors and Diabetic Retinopathy</li><li>Environmental Factors, Nutrition, and Diabetic Retinopathy</li><li>Conclusions</li><li>Take-Home Messages</li></ul></li><li>Chapter 55. Haptoglobin Genotype and Diabetic Retinopathy<ul><li>Introduction</li><li>Complications of Diabetes</li><li>Haptoglobin and Risk of Diabetic Retinopathy</li><li>Haptoglobin and Endothelial Dysfunction</li><li>Haptoglobin Genotype and Type of Diabetes</li><li>Animal Models of Diabetic Retinopathy</li><li>Prevalence of Mild Diabetic Retinopathy</li><li>Take-Home Messages</li></ul></li><li>Chapter 56. SLC23A2 Gene Variation, Vitamin C Levels, and Glaucoma<ul><li>Introduction</li><li>Environmental Factors in Glaucoma</li><li>Genetic Factors in Glaucoma</li><li>Nutritional Genomics</li><li>Vitamin C</li><li>SLC23A2 Gene Variation</li><li>Conclusions</li><li>Take-Home Messages</li></ul></li><li>Chapter 57. Molecular Pathways, Green Tea Extract, (&#x2212;)-Epigallocatechin Gallate, and Ocular Tissue<ul><li>Introduction</li><li>Molecular Pathway of Green Tea and (&#x2212;)-Epigallocatechin Gallate</li><li>Beneficial Effects of Green Tea Extract and (&#x2212;)-Epigallocatechin Gallate on the Corneal Epithelium</li><li>Antioxidant Effects of (&#x2212;)-Epigallocatechin Gallate on Human Lens Epithelial Cells</li><li>Protective Effects of (&#x2212;)-Epigallocatechin Gallate on Retinal Pigment Epithelium Cells</li><li>Effects on Ocular Hypertension and Glaucoma</li><li>Benefits for Retinal Ischemia&#x2013;Reperfusion Injury, Ophthalmic Artery, and Optic Nerve</li><li>Other Effects</li><li>How to Supply Green Tea Extract and Epigallocatechin Gallate</li><li>Conclusions</li><li>Take-Home Messages</li></ul></li><li>Chapter 58. Dietary Antioxidants, &#x3B1;v&#x3B2;5 Integrin, and Ocular Protection: Long-Term Consequences of Arrhythmic Retinal Pigment Epithelium Phagocytosis<ul><li>Introduction</li><li>Role of Integrin Adhesion Receptor &#x3B1;v&#x3B2;5 in Phagocytosis</li><li>Primary Retinal Pigment Epithelium Defects in Mice Lacking &#x3B1;V&#x3B2;5 Integrin</li><li>Actin Cytoskeletal Damage in Retinal Pigment Epithelium Cells</li><li>Conclusions</li><li>Take-Home Messages</li></ul></li><li>Chapter 59. Nutrition, Diet, the Eye, and Vision: Molecular Aspects of Vitamin A Binding Proteins and Their Importance in Vision<ul><li>Introduction</li><li>Analytical Methods</li><li>Structural Analysis</li><li>Take-Home Messages</li></ul></li><li>Chapter 60. Lycopene and Retinal Pigment Epithelial Cells: Molecular Aspects<ul><li>Introduction</li><li>Lycopene and Its Metabolites in Human Ocular Tissues</li><li>Oxidative Stress in the Retinal Pigment Epithelium</li><li>Inflammation in Retinal Pigment Epithelium</li><li>Angiogenesis in Retinal Pigment Epithelium</li><li>Cell Proliferation and Migration of Retinal Pigment Epithelial Cells</li><li>Conclusions</li><li>Take-Home Messages</li></ul></li><li>Chapter 61. Ascorbate Transport in Retinal Cells and Its Relationship with the Nitric Oxide System<ul><li>Introduction</li><li>Vitamin C</li><li>L-Arginine and Nitric Oxide</li><li>Nitric Oxide Regulation of Ascorbate System</li><li>Take-Home Messages</li></ul></li></ul></li> <li>Section 11. Adverse Effects and Reactions<ul><li>Chapter 62. Dietary Hyperlipidemia and Retinal Microaneurysms<ul><li>Introduction</li><li>Cardiovascular Risk Factors, Endothelial Dysfunction, and Inflammation</li><li>Hypercholesterolemia and Retinal Vascular Lesions</li><li>Obesity, Metabolic Syndrome, and Signs of Retinopathy</li><li>Glycemia and Diabetic Retinopathy</li><li>Blood Pressure and Retinal Vascular Lesions</li><li>How to Keep Healthy</li><li>Take-Home Messages</li></ul></li><li>Chapter 63. Iron-Induced Retinal Damage<ul><li>Introduction</li><li>Systemic and Retinal Diseases with Excess Iron</li><li>Importation, Storage, and Exportation of Iron in the Eye</li><li>The Role of Nutrition and Retinal Iron</li><li>Nutritional Iron and Eye Disease</li><li>Prevention and Therapeutics</li><li>Take-Home Messages</li></ul></li><li>Chapter 64. Hypoglycemia and Retinal Cell Death<ul><li>Introduction</li><li>Glucose Metabolism in the Retina</li><li>Hypoglycemia</li><li>Microarray Analysis and Major Pathways Involved</li><li>Apoptosis and Cell Death</li><li>Conclusions</li><li>Take-Home Messages</li></ul></li><li>Chapter 65. Yellow Corneal Rings, Age-Related Macular Degeneration, and Carotenoid Supplementation and Metabolism<ul><li>Age-Related Macular Degeneration, Areds1, and Areds2</li><li>Limbal Circulation, Yellow Rings, and Other Peripheral Corneal Rings</li><li>Carotenoid and Vitamin A Metabolism and its Clinical Significance</li></ul></li></ul></li> <li>Index</li> <li>Color Plates</li>


No. of pages:
© Academic Press 2014
8th April 2014
Academic Press
Hardcover ISBN:
eBook ISBN:

About the Editor

Victor Preedy

Victor R. Preedy BSc, PhD, DSc, FRSB, FRSPH, FRCPath, FRSC is a staff member of the Faculty of Life Sciences and Medicine within King's College London. He is also a member of the Division of Diabetes and Nutritional Sciences (research) and the Department of Nutrition and Dietetics (teaching). Professor Preedy is also Director of the Genomics Centre of King's College London. Professor Preedy graduated in 1974 with an Honours Degree in Biology and Physiology with Pharmacology. He gained his University of London PhD in 1981. In 1992, he received his Membership of the Royal College of Pathologists and in 1993 he gained his second doctorate (DSc), for his outstanding contribution to protein metabolism in health and disease. Professor Preedy was elected as a Fellow to the Institute of Biology in 1995 and to the Royal College of Pathologists in 2000. Since then he has been elected as a Fellow to the Royal Society for the Promotion of Health (2004) and The Royal Institute of Public Health (2004). In 2009, Professor Preedy became a Fellow of the Royal Society for Public Health and in 2012 a Fellow of the Royal Society of Chemistry. Professor Preedy has carried out research when attached to Imperial College London, The School of Pharmacy (now part of University College London) and the MRC Centre at Northwick Park Hospital. He has collaborated with research groups in Finland, Japan, Australia, USA and Germany. Prof Preedy is a leading expert on the science of health and has a long standing interest in neurological disease and tissue pathology. He has lectured nationally and internationally. To his credit, Professor Preedy has published over 600 articles, which includes peer-reviewed manuscripts based on original research, abstracts and symposium presentations, reviews and numerous books and volumes.

Affiliations and Expertise

Professor of Nutritional Biochemistry, Department of Nutrition and Dietetics, Professor of Clinical Biochemistry, Department of Clinical Biochemistry; Director of the Genomics Centre, King’s College, London, UK

Ratings and Reviews