COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Handbook of Magnetic Materials - 1st Edition - ISBN: 9780444829566, 9780080933528

Handbook of Magnetic Materials, Volume 11

1st Edition

0.0 star rating Write a review
Serial Editor: K.H.J. Buschow
Hardcover ISBN: 9780444829566
eBook ISBN: 9780080933528
Imprint: North Holland
Published Date: 12th August 1998
Sales tax will be calculated at check-out Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.

Table of Contents

Preface. Contents of Volumes 1-10. 1. Magnetism of ternary intermetallic compounds of uranium (V. Sechovský and L. Havela). 2. Magnetic recording hard disk thin film media (J.C. Lodder). 3. Magnetism of permanent magnet materials and related compounds as studied by NMR (Cz. Kapusta, P.C. Riedi, G.J. Tomka). 4. Crystal field effects in intermetallic compounds studied by inelastic neutron scattering (O. Moze). Author index. Subject index. Materials index.


Volume 11 of this prestigious series, as the preceding volumes, has a dual purpose. As a textbook it is intended to be of assistance to those who wish to be introduced to a given topic in the field of magnetism without the need to read the vast amount of literature published. As a work of reference it is intended for scientists active in magnetism research. In keeping with this dual purpose, Volume 11 of the Handbook is composed of topical review articles written by leading authorities. In each of these articles an extensive description is given in graphical as well as in tabular form, much emphasis being placed on the discussion of the experimental material in the framework of physics, chemistry and materials science.

Chapter one focuses on the growing interest in intermetallic compounds based on uranium. Recent research activities have finally led to the crystallisation of new concepts in actinide magnetism which, together with the large amount of experimental work are reviewed in this chapter.

The last few decades have witnessed quite an extraordinary development in magnetic recording technology. In the near future magnetic recording technology will have an enormous growth potential, one of it's main aims being the further reduction in the peripheral device sizes while maintaining an increase in capacity. Chapter two deals with the magnetism and materials aspects of hard disk media which are the most prominent type of mass storage today, due to their low cost, high speed and relatively high storage capacity.

Magnets based on rare earth elements are unequalled with regard to coercivity and maximum energy production. Considerable progress has been made in the development of rare earth based permanent magnets which goes hand in hand with a better understanding of the physical properties and especially the magnetism of the underlying class of materials. Chapter three presents a survey of the physical principles involved with this technique and how these can be applied advantageously to the study of strongly ferromagnetic materials.

The final chapter is devoted to inelastic neutron scattering when applied to study the crystal field interaction in lanthanide compounds. Included in this review is a description of how this technique is complementary to various other modern and conventional techniques.


© North Holland 1998
12th August 1998
North Holland
Hardcover ISBN:
eBook ISBN:


@qu:This latest edition of the Handbook of Magnetic Materials presents a continuation of a fine balance between review articles of research on more basic properties of magnetic materials on applications oriented studies. ...The volume is unreservedly recommended to researchers in the field of magnetic materials. @source:Magnetic and Electrical Separation

Ratings and Reviews

About the Serial Editor

K.H.J. Buschow

Professor Kurt Heinz Jürgen Buschow is a member of the Experimental Physics Department of the University of Amsterdam, where he teaches Magnetism and Magnetic Materials. He studied Physical Chemistry at the Free University of Amsterdam, starting in 1954.
After having received his M.Sc. degree in 1960 he prepared his thesis work dealing with “Ion-pair Formation with Polyacene Mono and Dinegative Ions”. He received his Ph.D. degree at the Free University in 1963.
In 1964 he held a research position at the Philips Research Laboratories in Eindhoven. He was appointed Senior Scientist in 1976 and Chief Scientist in 1988. His research activities comprised fundamental as well as applied aspects. During this period he stayed for one year (1977) as a guest scientist at the Bell Laboratories, Murray Hill, N.Y. In March 1994 he left the Philips Research Laboratories, taking a position at the Van der Waals-Zeeman Institute, University of Amsterdam and having simultaneously a part-time professorship at the University of Leiden.
His teaching activities are in the field of Metal Physics and Magnetic Materials. He has published more than 1100 papers in international scientific journals and is author of several review papers and handbook chapters on magnetic materials, metal hydrides and amorphous alloys. He is Editor-in-Chief of the Journal of Alloys and Compounds, Advisory Editor of the Journal of Magnetism and Magnetic Materials and is also Editor of the Series Handbook Magnetic Materials. Recently he became one of the Editors-in-Chief of the Encyclopedia of Materials: Science and Technology.

Affiliations and Expertise

Van Der Waals-Zeeman Institute, University of Amsterdam, The Netherlands