COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Handbook of Complex Analysis - 1st Edition - ISBN: 9780444515476, 9780080495170

Handbook of Complex Analysis

1st Edition

Geometric Function Theory

Editor: Reiner Kuhnau
eBook ISBN: 9780080495170
Hardcover ISBN: 9780444515476
Imprint: North Holland
Published Date: 9th December 2004
Page Count: 876
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings.

Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem.

There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane).

Key Features

· A collection of independent survey articles in the field of GeometricFunction Theory
· Existence theorems and qualitative properties of conformal and quasiconformal mappings
· A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).


Institutes of mathematics (and computer sciences). Institutes of physics and engineering.

Table of Contents

Preface (R. Kühnau).
Quasiconformal mappings in euclidean space (F.W. Gehring).
Variational principles in the theory of quasiconformal maps (S.L. Krushkal).
The conformal module of quadrilaterals and of rings (R. Kühnau).
Canonical conformal and quasiconformal mappings. Identities. Kernel functions (R. Kühnau).
Univalent holomorphic functions with quasiconform extensions (variational approach) (S.L. Krushkal).
Transfinite diameter, Chebyshev constant and capacity (S. Kirsch).
Some special classes of conformal mappings (T.J. Suffridge).
Univalence and zeros of complex polynomials (G. Schmieder).
Methods for numerical conformal mapping (R. Wegmann).
Univalent harmonic mappings in the plane (D. Bshouty, W. Hengartner).
Quasiconformal extensions and reflections (S.L. Krushkal).
Beltrami equation (U. Srebro, E. Yakubov).
The applications of conformal maps in electrostatics (R. Kühnau).
Special functions in Geometric Function Theory (S.-L. Qin, M. Vuorinen).
Extremal functions in Geometric Function Theory. Special functions. Inequalities (R. Kühnau).
Eigenvalue problems and conformal mapping (B. Dittmar).
Foundations of quasiconformal mappings (C.A. Cazacu).
Quasiconformal mappings in value-distribution theory (D. Drasin. A.A. Gol’dberg, P. Poggi-Corradini).


No. of pages:
© North Holland 2004
9th December 2004
North Holland
eBook ISBN:
Hardcover ISBN:

About the Editor

Reiner Kuhnau

Affiliations and Expertise

Martin Luther Universität, Halle-Wittenberg, Germany

Ratings and Reviews