Description

This comprehensive book covers recent developments in advanced dielectric, piezoelectric and ferroelectric materials. Dielectric materials such as ceramics are used to manufacture microelectronic devices. Piezoelectric components have been used for many years in radioelectrics, time-keeping and, more recently, in microprocessor-based devices. Ferroelectric materials are widely used in various devices such as piezoelectric/electrostrictive transducers and actuators, pyroelectric infrared detectors, optical integrated circuits, optical data storage and display devices.

The book is divided into eight parts under the general headings: High strain high performance piezo- and ferroelectric single crystals; Electric field-induced effects and domain engineering; Morphotropic phase boundary related phenomena; High power piezoelectric and microwave dielectric materials; Nanoscale piezo- and ferroelectrics; Piezo- and ferroelectric films; Novel processing and new materials; Novel properties of ferroelectrics and related materials. Each chapter looks at key recent research on these materials, their properties and potential applications.

Advanced dielectric, piezoelectric and ferroelectric materials is an important reference tool for all those working in the area of electrical and electronic materials in general and dielectrics, piezoelectrics and ferroelectrics in particular.

Key Features

  • Covers the latest developments in advanced dielectric, piezoelectric and ferroelectric materials
  • Includes topics such as high strain high performance piezo and ferroelectric single crystals
  • Discusses novel processing and new materials, and novel properties of ferroelectrics and related materials

Readership

All those working in the area of electrical and electronic materials in general and dielectrics, piezoelectrics and ferroelectrics in particular

Table of Contents

Part 1 High strain high performance piezo- and ferroelectric single crystals: Bridgman growth and properties of PMN-PT single crystals; Flux growth and characterization of PZN-PT and PMN-PT single crystals; Recent developments and applications of Piezo crystals; Piezoelectric single crystals for medical ultrasonic transducers; High performance, high-TC piezoelectric crystals; Development of high performance piezoelectric single crystals by using solid-state single crystal growth (SSCG) method; Piezo- and ferroelectric (1-x)Pb(Sc1/2Nb1/2)O3?xPbTiO3 solid solution system; High-curie temperatures piezoelectric single crystal of the Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary materials system. Part 2 Field-induced effects and domain engineering: Full set material properties and domain engineering principles of ferroelectric single crystals; Domain wall engineering in piezoelectric crystals with engineered domain configuration; Enhancement of piezoelectric properties in perovskite crystals by thermally, compositionally, electric field and stress induced instabilities; Electric-field-induced domain structures and phase transitions in PMN-PT single crystals; Energy analysis of field induced phase transitions in relaxor-based piezo- and ferroelectric crystals. Part 3 Morphotropic phase boundary and related phenomena: From the structure of relaxor to the structure of MPB systems; Size effects on the macroscopic properties of the relaxor-ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 solid solution. Part 4 High power piezoelectric and microwave dielectric materials: Loss mechanisms and high power piezoelectric components; Bismuth-based pyrochlore dielectric ceramics for microwave applications. Part 5 Nanoscale piezo- and ferroelectrics: Ferroelectric nanostructures for device applications; Domains in ferroelectric nanostructures from first principles; Nanosized ferroelectric crystals; Nano- and micro-domain engineering in normal and relaxor ferroelectrics; Interface control in 3D

Details

No. of pages:
1096
Language:
English
Copyright:
© 2008
Published:
Imprint:
Woodhead Publishing
Print ISBN:
9781845691868
Electronic ISBN:
9781845694005

About the editor

Z-G Ye

Zuo-Guang Ye is Professor of Chemistry at Simon Fraser University, Canada. He is recognized as a world leader in the growth and characterization of novel single crystals. He has published numerous papers in the area of dielectric, piezoelectric and ferroelectric materials and he is a major contributor to the ONR and DARPA research programs on innovative piezoelectric single crystals.