
Green-Emitting Luminescent Materials
Phosphor Materials, Properties, Synthesis, and Characterization
Description
Key Features
- Presents a concise overview of different types of green emitting phosphor materials for solid state lighting and other relevant application
- Reviews and compares the most relevant characterization methods of inorganic green-emitting phosphors
- Addresses fundamentals, luminescence mechanisms and key optical materials, including synthesis methods
Readership
Materials Scientists and Engineers
Table of Contents
Chapter 1: Introduction
1.2.1. Incandescence
1.2.2. Luminescence and physical processes taking place during luminescence
1.3. Fluorescence and Phosphorescence
1.3.1. Fluorescence
1.3.2. Principle of fluorescence process
1.3.3. Three Basic Laws of Fluorescence
1.3.4. Advantage of Flurometric Analysis
1.3.4.1. Hight Sensitivity
1.3.5. Phosphorescence
1.3.6. Radiationless transitions
1.4. Luminescence:
1.5. Green Luminescence in Rare-Earth Elements (REE)
1.6. Emission and Excitation mechanism of Phosphor
1.6.1. Introduction
1.6.2. Luminescence Mechanism
1.6.3. Centre Luminescence
1.7. Phosphors
1.7.1. Properties associated with phosphors
1.7.1.1. Notation
1.7.1.2. Quantum Efficiency
1.7.1.3. Application of Luminescence
1.8 Colour conversion of phosphors in lamps and LED industry
1.8.1 Introduction
1.8.2 Metal oxide phosphors for Hg and other lamps
1.8.3 Disadvantages of existing LEDs
1.8.4 Metal oxide phosphors available for lamp & LED application
1.8.5 lamp phosphor and White LED technology
1.9 .Phosphors in the display industry
1.9.1. Introduction
1.9.2. Vacuum fluorescent display
1.9.3. Field Emission Display
1.9.4. Plasma display
1.9.5. Electroluminescence display
1.9.6. Flat panel display
1.10. Optoelectronic / photonic devices
1.10.1. Introduction
1.10.2. Lasers and Optical Amplifiers
1.10.3. Photo Detectors
1.10.4. Image Sensors
1.10.5. Modulators and demodulators
1.10.6. Multiplexers and demultiplexers
1.10.7. Special Waveguides
1.10.8. Anti reflection coatings and Dielectric Mirrors
1.10.9. Quantum well Devices
1.11. Marking and detection
1.11. 1. Introduction
1.11. 2. Nano formulated sizes for bio marking
1.11. 3. IR and UV Detection
1.11. 4. Laser Detection
1.11. 5. X-ray and ionizing radiation detection
1.11.6. Finger print detection
1.8. Green Emitting Phosphors based upon rare-earth/transition metal activator ions
1.9. Diversified applications of Green emitting phosphors
1.10. Thermoluminescence
1.10.1. Fundamental Aspects of Thermoluminescence
1.10.2. Thermoluminescence Dosimetry (TLD) Phosphor
1.11. Origin, Objectives and Scope
ReferencesChapter 2: Experimental and Characterization Techniques
2.1. Introduction
2.2. 2.2.1 Sample Preparation Methods and Calculations
2.2.2. Synthesis
2.3. Synthesis Techniques of Phosphor Materials
2.3.1. Solid State Reaction Method
2.3.1.1. Condition for Solid state reaction method
2.3.1.2. Advantage of solid state reaction method
2.3.1.3. Drawbacks of solid state reaction method
2.3.2. Combustion synthesis
2.3.2.1. Merits of Combustion Synthesis
2.3.3. Wet Chemical Synthesis
2.3.4. Precipitation Methods
2.4. Lowering the synthesis temperature
2.5. Effect of Temperature
2.6. The Laboratory set up for synthesis
2.7. Characterization of synthesized phosphor
2.7.1. X-Ray Diffractometer (XRD)
2.7.2. Determination of Phase, Crystalinity by XRD technique
2.7.3. Working Principle: Bragg’s Law
2.7.4. Instrumentation
2.7.5. Technical specification of Philips PANalytical X-pert pro Diffractometer
2.7.6. JCPDS/ICDD Data base
2.77. Scanning Electroin Microscopy (SEM)
2.7.7.1. Working Principle
2.7.7.2. Instrumentation
2.8. Spectroflurometer
2.8.1. Working Principle
2.8.2. Instrumentation
2.9. Fourier Transform Infrared Spectrometer
2.9.1. Principle of FTIR
2.9.2. Optical system of FTIR
2.9.3. Application of IR spectra
2.10. Transmission Electron Microscopy
2.10.1. Specifications of Transmission Electron Microscope
2.11. Thermal Analysis
2.11.1 Differential Thermal Analysis
2.11.2 Thermogravimetric Analysis (TGA)
2.11.3 Differential Scanning Calorimetry (DSC)
2.12. Some Definitions Concerning Temperature
2.13. Chromaticity Coordinates
References.Chapter 3: Synthesis of Mal12O19: RE3+/2+ ( RE= Tb3+ , Eu2+ ) and (where, M= Sr, Ba and Ca) Green Emitting phosphors
3.1. Introduction
3.2. Combustion synthesis and photoluminescence studies of Tb3+ , Eu2+ activated CaAl12O19 phosphor
3.2.1. Experimental Details
3.2.2. Result and Discussions
3.2.2.1. Structural, Compositional, and Morphostructural Characterizations of CaAl12O19 phosphor
3.2.2.2. Photoluminescence properties of Tb3+ activated CaAl12O19 phosphor
3.2.2.3. Photoluminescence properties of Eu2+ activated CaAl12O19 phosphor
3.2.2.4. Relation between Emission intensity & concentration of Tb3+ , Eu2+ ion in CaAl12O19 phosphor
3.2.2.5. Stokes shift
3.2.2.6. Chromatic properties
3.2.2.7. Kinetic Parameter
3.2.2.8. Conclusions.
3.3. Synthesis and photoluminescence studies of Tb3+, Eu2+ activated BaAl12O19 phosphor
3.3.1. Experimental Details
3.3.2. Results and discussion
3.3.2.1. Structural, Compositional, and Morphostructural Characterizations of BaAl12O19 phosphor
3.3.2.4. Photoluminescence properties of Tb3+ activated BaAl12O19 phosphor
3.3.2.5. Photoluminescence properties of Eu2+ activated BaAl12O19 phosphor
3.3.2.6. Relation between Emission intensity & concentration of Tb3+ , Eu2+ ion in BaAl12O19 phosphor
3.3.2.7. Stokes shift
3.3.2.8. Kinetic Parameter
3.3.2.9. Chromatic Properties
3.3.2.10. Conclusions
3.4. Synthesis and photoluminescence studies of Tb3+ , Eu2+ activated SrAl12O19 phosphor .
3.4.1. Experimental Details
3.4.2. Results and discussion
3.4.2.1. Structural, Compositional, and Morphostructural Characterizations of BaAl12O19 phosphor
3.4.2.2. Photoluminescence properties of Tb3+ activated SrAl12O19 phosphor .
3.4.2.3. Photoluminescence properties of Eu2+ activated SrAl12O19 phosphor .
3.4.2.4. Relation between Emission intensity & concentration of Tb3+ , Eu2+ ion in SrAl12O19 phosphor
3.3.2.5. Stokes shift
3.3.2.6. Kinetic Parameter
3.3.2.7. Chromatic properties
3.3.2.8. Conclusions
ReferencesChapter 4: Synthesis of RE3+(RE=Tb3+,Eu3+ and Dy3+) activated BaMgAl10O17, Sr2MgAl16O27 and MgPbAl10O17 phosphors .
4.1 Introduction
4.2. Photoluminescence studies of RE3+(RE=Tb3+,Eu2+)activated BaMgAl10O17 phosphor .
4.1.1 Structural, Compositional, and Morphostructural Characterizations of BaMgAl10O17 phosphor
4.1.2.1. Photoluminescence investigations of Tb3+ activated BaMgAl10O17 phosphor
4.1.2.2. Photoluminescence investigations of Eu2+ activated BaMgAl10O17 phosphor
4.1.2.3. Emission intensities w.r.t. concentration of Tb3+ , Eu2+ ion in host lattice
4.1.2.4 . Kinetic Parameter
4.1.2.5. Chromatic Properties
4.1.2.6. Conclusions.
4.3 Photoluminescence studies of RE3+(RE=Tb3+,Eu2+) activated Sr2MgAl16O27 phosphor by combustion synthesis .
4.3.1. Structural, Compositional, and Morphostructural Characterizations of Sr2MgAl16O27 phosphor
4.3.1.1. Photoluminescence properties of Sr2MgAl16O27:Tb3+ phosphor
4.3.1.2. Photoluminescence properties of Sr2MgAl16O27:Eu2+ phosphor
4.3.1.3.Emission intensities w.r.t. concentration of RE3+(RE=Tb3+,Eu2+) ion in host lattice.
4.3.1.4. Kinetic Parameter
4.3.1.5. Conclusions
4.4. Photoluminescence studies of RE3+(RE=Tb3+,Eu2+) activated MgPbAl10O17 phosphors .
4.4.1. Structural, Compositional, and Morphostructural Characterizations of MgPbAl10O17 phosphors
4.4.1.2. Photoluminescence properties of MgPbAl10O17:Tb3+ phosphors
4.4.1.3. Photoluminescence properties of MgPbAl10O17:Eu2+ phosphors
4.4.1.4. Emission intensities w.r.t. concentration of RE3+(RE=Tb3+,Eu2+) ion in host lattice.
4.4.1.5. Kinetic Parameter
4.4.1.6.Chromaticity Coordinates
4.4.1.7. Conclusions.
ReferencesChapter 5: Photoluminescence characterization of RE (Tb3+) activated Borate based phosphors
Introduction
5.1. Photoluminescence studies of Tb3+ activated Sr2BO3Cl borate based phosphor for solid state lighting
5.1.1. Experimental Details
5.1.2. Results and Discussion
5.1.2.1. X-ray diffraction pattern and surface morphology and FTIR of Sr2BO3Cl phosphor host lattice
5.1.2.2. Surface Morphology of Sr2BO3Cl phosphor
5.1.2.3. FTIR Analysis
5.1.3. Photoluminescence properties of Tb3+ activated Sr2BO3Cl phosphor
5.1.4. Relation between Emission intensity & concentration of Tb3+ ion in Sr2BO3Cl phosphor
5.1.5. Kinetic Parameter
5.1.6. Chromatic Properties of Sr2BO3Cl:Tb3+ phosphor
5.1.7. Conclusions.
5.2. Photoluminescence studies of Tb3+ activated LiBO2 borate based phosphor for solid state lighting.
5.2.1. Experimental Details
5.2.2. Result and Discussions
5.2.2.1. X ray diffraction, surface morphology of LiBO2 phosphor
5.2.2.2. SEM of LiBO2 phosphor
5.2.3. Photoluminescence properties of Tb3+ activated LiBO2 phosphor
5.2.4. Relation between Emission intensity & concentration of Tb3+ ion in LiBO2 phosphor
5.2.5. Kinetic Parameter
5.2.6. Chromatic properties of LiBO2 :Tb3+ phosphor
5.2.7. Conclusions
5.3 Photoluminescence studies of Tb3+ activated Sr2B2O5 borate based phosphor for solid state lighting.
5.3.1. Experimental Details
5.3.2. Result and Discussion
5.3.2.1. X ray diffraction, surface morphology of Sr2B2O5 phosphor host lattice
5.3.2.2. SEM micrograph of Sr2B2O5 phosphor
5.3.2.3. FTIR of Sr2B2O5 phosphor
5.3.3. Photoluminescence properties of Sr2B2O5 :Tb3+ phosphor.
5.3.4. Relation between Emission intensity & concentration of Tb3+ ion in Sr2B2O5 phosphor
5.3.5. Kinetic Parameter
5.3.6. Chromaticity Coordinates
5.3.7. Conclusions
5.4. Photoluminescence studies of Tb3+ activated SrB4O7 borate based phosphor for solid state lighting.
5.4.1. Experimental Details
5.4.2. Result and Discussions
5.4.2.1. X ray diffraction pattern , SEM of SrB4O7 phosphor
5.4.2.2. SEM of SrB4O7 phosphor
5.4.2.3. FTIR of SrB4O7 phosphor
5.4.3. Photoluminescence properties of SrB4O7:Tb3+ phosphor
5.4.4. Relation between Emission intensity & concentration of Tb3+ ion in SrB4O7 phosphor
5.4.5. Kinetic Parameter
5.4.6. Chromaticity Nature
5.4.7. ConclusionsChapter 6: Photoluminescence Study of Tb3+ doped Ba2Sr2Al2O7 , Ca2Al3O6F, Ca3Al2O5Cl2, LiSiO3 and ZrO2 ,Li2MgZrO4 phosphor .
6.1. Introduction
6.2. Synthesis and photoluminescence properties Tb3+ activated Ba2Sr2Al2O7 , Ca2Al3O6F, Ca3Al2O5Cl2 phosphor .
6.2.1. Experimental details
6.2.1.1. Synthesis of Tb3+ doped Ba2Sr2Al2O7 , Ca2Al3O6F, Ca3Al2O5Cl2 phosphor
6.2.2. Results and discussion
6.2.2.1. X-ray diffraction pattern and structural behavior of Ba2Sr2Al2O7 , Ca2Al3O6F, Ca3Al2O5Cl2 phosphor
6.2.2.2. SEM characterization of Ba2Sr2Al2O7 , Ca2Al3O6F, Ca3Al2O5Cl2 phosphor
6.2.2.3. FTIR spectra of Ba2Sr2Al2O7 , Ca2Al3O6F, Ca3Al2O5Cl2 phosphor
6.2.2.4. Photoluminescence characterization of Ba2Sr2Al2O7 , Ca2Al3O6F, Ca3Al2O5Cl2 phosphor
6.2.2.4.1. Photoluminescence investigation of Ca3Al2O5Cl2 :Tb3+ phosphor
6.2.2.4.2. Photoluminescence investigation of Ba2Sr2Al2O7 :Tb3+ phosphor
6.2.2.4.3. Photoluminescence investigation of Ca2Al3O6F :Tb3+ phosphor
6.2.2.4.4. Emission intensities w r to conc of Tb3+ in Ba2Sr2Al2O7 , Ca2Al3O6F, Ca3Al2O5Cl2 phosphor.
6.2.2.4.5. Study of Kinetic Parameter
6.2.2.4.6. Chromaticity Nature
6.2.2.4.7. Conclusions
6.3. Synthesis and photoluminescence properties of Tb3+ activated LiSiO3 phosphor .
6.3.1. Experimental Details
6.3.1.1. Synthesis of Tb3+ doped LiSiO3 phosphor
6.3.1.2 Result and Discussions
6.3.1.2.1. X ray diffraction pattern and structural behavior of LiSiO3 phosphor
6.3.1.2.2. Morphostructural Characterizations of LiSiO3 phosphor
6.3.1.3. Photoluminescence characterization
6.3.1.3.1. Tb3+ Luminescence in LiSiO3 phosphor
6.3.1.4. Study of Kinetic Parameter
6.3.1.5. Chromatic properties
6.4. Synthesis and photoluminescence properties of Tb3+ activated ZrO2 and Li2MgZrO4 phosphor .
6.4.1. Experimental Details
6.4.1.1. Synthesis of Tb3+ doped ZrO2 and Li2MgZrO4 phosphor
6.4.2. Result and Discussions
6.4.2.1. X ray diffraction pattern and structural behavior of ZrO2 and Li2MgZrO4 phosphor
6.4.2.2. Morphostructural Characterizations of ZrO2 and Li2MgZrO4 phosphor
6.4.3 Photoluminescence Characterization
6.4.3.1. Photoluminescence investigation of ZrO2 :Tb3+ phosphor
6.4.3.2. Photoluminescence investigation of Li2MgZrO4:Tb3+ phosphor
6.4.3.3. Emission Intensities w.r.t. conc. of Tb3+ in ZrO2 and Li2MgZrO4 phosphor
6.4.4. Kinetic parameter
6.4.5. Chromaticity Nature
6.4.6. Conclusions
ReferencesChapter 7: Mn4+ Green emitting phosphor for plant cultivation
7.1.1. Experimental Details
7.2.1. Synthesis of Mn4+doped phosphor for plant cultivation
7.3.1 Result and Discussions
7.3.1.1 X ray diffraction pattern and structural behavior of
7.3.1.1.2. Morphostructural Characterizations
7.3.1.1.3. Photoluminescence characterization
7.3.1.1.4. Mn4+ Luminescence
7.3.1.1.5. Study of Kinetic Parameter
7.3.1.1.6. Chromatic propertiesChapter 8: Conclusions
Product details
- No. of pages: 340
- Language: English
- Copyright: © Woodhead Publishing 2022
- Published: December 1, 2022
- Imprint: Woodhead Publishing
- Paperback ISBN: 9780323884709
About the Authors
Vishal Panse
Affiliations and Expertise
Sanjay Dhoble
Affiliations and Expertise
Marta Domanska
Affiliations and Expertise
Ratings and Reviews
There are currently no reviews for "Green-Emitting Luminescent Materials"