COVID-19 Update: We are currently shipping orders daily. However, due to transit disruptions in some geographies, deliveries may be delayed. To provide all customers with timely access to content, we are offering 50% off Science and Technology Print & eBook bundle options. Terms & conditions.
Geometric Measure Theory - 1st Edition - ISBN: 9780125068550, 9781483277806

Geometric Measure Theory

1st Edition

A Beginner's Guide

Author: Frank Morgan
eBook ISBN: 9781483277806
Imprint: Academic Press
Published Date: 28th March 1988
Page Count: 154
Sales tax will be calculated at check-out Price includes VAT/GST
Price includes VAT/GST

Institutional Subscription

Secure Checkout

Personal information is secured with SSL technology.

Free Shipping

Free global shipping
No minimum order.


Geometric Measure Theory: A Beginner's Guide provides information pertinent to the development of geometric measure theory. This book presents a few fundamental arguments and a superficial discussion of the regularity theory.

Organized into 12 chapters, this book begins with an overview of the purpose and fundamental concepts of geometric measure theory. This text then provides the measure-theoretic foundation, including the definition of Hausdorff measure and covering theory. Other chapters consider the m-dimensional surfaces of geometric measure theory called rectifiable sets and introduce the two basic tools of the regularity theory of area-minimizing surfaces. This book discusses as well the fundamental theorem of geometric measure theory, which guarantees solutions to a wide class of variational problems in general dimensions. The final chapter deals with the basic methods of geometry and analysis in a generality that embraces manifold applications.

This book is a valuable resource for graduate students, mathematicians, and research workers.

Table of Contents


1. Geometric Measure Theory

2. Measures

3. Lipschitz Functions and Rectifiable Sets

4. Normal and Rectifiable Currents

5. The Compactness Theorem and the Existence of Area- Minimizing Surfaces

6. Examples of Area-Minimizing Surfaces

7. The Approximation Theorem

8. Survey of Regularity Results

9. Monotonicity and Oriented Tangent Cones

10. The Regularity of Area-Minimizing Hypersurfaces

11. Flat Chains Modulo v, Varifolds, and (M, ε, δ)-Minimal Sets

12. Miscellaneous Useful Results

Solutions to Exercises


Index of Symbols

Name Index

Subject Index


No. of pages:
© Academic Press 1988
28th March 1988
Academic Press
eBook ISBN:

About the Author

Frank Morgan

Frank Morgan is the Dennis Meenan '54 Third Century Professor of Mathematics at Williams College. He obtained his B.S. from MIT and his M.S. and Ph.D. from Princeton University. His research interest lies in minimal surfaces, studying the behavior and structure of minimizers in various settings. He has also written Riemannian Geometry: A Beginner's Guide, Calculus Lite, and most recently The Math Chat Book, based on his television program and column on the Mathematical Association of America Web site.

Affiliations and Expertise

Williams College, Williamstown, MA, USA

Ratings and Reviews