Many modern energy systems are reliant on the production, transportation, storage, and use of gaseous hydrogen. The safety, durability, performance and economic operation of these systems is challenged by operating-cycle dependent degradation by hydrogen of otherwise high performance materials. This important two-volume work provides a comprehensive and authoritative overview of the latest research into managing hydrogen embrittlement in energy technologies.

Volume 1 is divided into three parts, the first of which provides an overview of the hydrogen embrittlement problem in specific technologies including petrochemical refining, automotive hydrogen tanks, nuclear waste disposal and power systems, and H2 storage and distribution facilities. Part two then examines modern methods of characterization and analysis of hydrogen damage and part three focuses on the hydrogen degradation of various alloy classes

With its distinguished editors and international team of expert contributors, Volume 1 of Gaseous hydrogen embrittlement of materials in energy technologies is an invaluable reference tool for engineers, designers, materials scientists, and solid mechanicians working with safety-critical components fabricated from high performance materials required to operate in severe environments based on hydrogen. Impacted technologies include aerospace, petrochemical refining, gas transmission, power generation and transportation.

Key Features

  • Summarises the wealth of recent research on understanding and dealing with the safety, durability, performance and economic operation of using gaseous hydrogen at high pressure
  • Reviews how hydrogen embrittlement affects particular sectors such as the petrochemicals, automotive and nuclear industries
  • Discusses how hydrogen embrittlement can be characterised and its effects on particular alloy classes


Professionals and academics.

Table of Contents

Contributor contact details


Part I: The hydrogen embrittlement problem

Chapter 1: Hydrogen production and containment


1.1 Introduction

1.2 American Society of Mechanical Engineers (ASME) stationary vessels in hydrogen service

1.3 Department of Transportation (DOT) steel transport vessels

1.4 Fracture mechanics method for steel hydrogen vessel design

1.5 American Society of Mechanical Engineers (ASME) stationary composite vessels

1.6 Composite transport vessels

1.7 Hydrogen pipelines

1.8 Gaseous hydrogen leakage

1.9 Joint design and selection

1.10 American Society of Mechanical Engineers (ASME) code leak and pressure testing

Chapter 2: Hydrogen-induced disbonding and embrittlement of steels used in petrochemical refining


2.1 Introduction

2.2 Petrochemical refining

2.3 Problems during/after cooling of reactors

2.4 Effect of hydrogen content on mechanical properties

2.5 Conclusion

Chapter 3: Assessing hydrogen embrittlement in automotive hydrogen tanks


3.1 Introduction

3.2 Experimental details

3.3 Results and discussion

3.4 Conclusions and future trends

Chapter 4: Gaseous hydrogen issues in nuclear waste disposal


4.1 Introduction

4.2 Nature of nuclear wastes and their disposal environments

4.3 Gaseous hydrogen issues in the disposal of high activity wastes

Chapter 5: Hydrogen embrittlement in nuclear power systems


5.1 Introduction

5.2 Experimental methods

5.3 Environmental factors

5.4 Metallurgical effects

5.5 Conclusions

5.6 Acknowledgements

Chapter 6: Standards and codes to control hydrogen-induced cracking in pressure vessels and pipes for hydrogen gas storage and transport


No. of pages:
© 2012
Woodhead Publishing
eBook ISBN:
Print ISBN:
Print ISBN:

About the editors

Brian Somerday

Affiliations and Expertise